Electrical and Polarimetric Radar Observations of a Multicell Storm in TELEX

Eric C. Bruning Cooperative Institute for Mesoscale Meteorological Studies, and NOAA/OAR National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by Eric C. Bruning in
Current site
Google Scholar
PubMed
Close
,
W. David Rust NOAA/OAR National Severe Storms Laboratory, and Cooperative Institute for Mesoscale Meteorological Studies, Norman, Oklahoma

Search for other papers by W. David Rust in
Current site
Google Scholar
PubMed
Close
,
Terry J. Schuur Cooperative Institute for Mesoscale Meteorological Studies, and NOAA/OAR National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by Terry J. Schuur in
Current site
Google Scholar
PubMed
Close
,
Donald R. MacGorman NOAA/OAR National Severe Storms Laboratory, and Cooperative Institute for Mesoscale Meteorological Studies, Norman, Oklahoma

Search for other papers by Donald R. MacGorman in
Current site
Google Scholar
PubMed
Close
,
Paul R. Krehbiel New Mexico Institute of Mining and Technology, Socorro, New Mexico

Search for other papers by Paul R. Krehbiel in
Current site
Google Scholar
PubMed
Close
, and
William Rison New Mexico Institute of Mining and Technology, Socorro, New Mexico

Search for other papers by William Rison in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

On 28–29 June 2004 a multicellular thunderstorm west of Oklahoma City, Oklahoma, was probed as part of the Thunderstorm Electrification and Lightning Experiment field program. This study makes use of radar observations from the Norman, Oklahoma, polarimetric Weather Surveillance Radar-1988 Doppler, three-dimensional lightning mapping data from the Oklahoma Lightning Mapping Array (LMA), and balloon-borne vector electric field meter (EFM) measurements. The storm had a low flash rate (30 flashes in 40 min). Four charge regions were inferred from a combination of LMA and EFM data. Lower positive charge near 4 km and midlevel negative charge from 4.5 to 6 km MSL (from 0° to −6.5°C) were generated in and adjacent to a vigorous updraft pulse. Further midlevel negative charge from 4.5 to 6 km MSL and upper positive charge from 6 to 8 km (from −6.5° to −19°C) were generated later in quantity sufficient to initiate lightning as the updraft decayed. A negative screening layer was present near the storm top (8.5 km MSL, −25°C). Initial lightning flashes were between lower positive and midlevel negative charge and started occurring shortly after a cell began lofting hydrometeors into the mixed phase region, where graupel was formed. A leader from the storm’s first flash avoided a region where polarimetric radar suggested wet growth and the resultant absence of noninductive charging of those hydrometeors. Initiation locations of later flashes that propagated into the upper positive charge tracked the descending location of a polarimetric signature of graupel. As the storm decayed, electric fields greater than 160 kV m−1 exceeded the minimum threshold for lightning initiation suggested by the hypothesized runaway breakdown process at 5.5 km MSL, but lightning did not occur. The small spatial extent (≈100 m) of the large electric field may not have been sufficient to allow runaway breakdown to fully develop and initiate lightning.

Corresponding author address: Eric Bruning, Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, and NOAA/OAR National Severe Storms Laboratory, NSSL/FRDD, National Weather Center, 120 David L. Boren Drive, Norman, OK 73072. Email: eric.bruning@noaa.gov

Abstract

On 28–29 June 2004 a multicellular thunderstorm west of Oklahoma City, Oklahoma, was probed as part of the Thunderstorm Electrification and Lightning Experiment field program. This study makes use of radar observations from the Norman, Oklahoma, polarimetric Weather Surveillance Radar-1988 Doppler, three-dimensional lightning mapping data from the Oklahoma Lightning Mapping Array (LMA), and balloon-borne vector electric field meter (EFM) measurements. The storm had a low flash rate (30 flashes in 40 min). Four charge regions were inferred from a combination of LMA and EFM data. Lower positive charge near 4 km and midlevel negative charge from 4.5 to 6 km MSL (from 0° to −6.5°C) were generated in and adjacent to a vigorous updraft pulse. Further midlevel negative charge from 4.5 to 6 km MSL and upper positive charge from 6 to 8 km (from −6.5° to −19°C) were generated later in quantity sufficient to initiate lightning as the updraft decayed. A negative screening layer was present near the storm top (8.5 km MSL, −25°C). Initial lightning flashes were between lower positive and midlevel negative charge and started occurring shortly after a cell began lofting hydrometeors into the mixed phase region, where graupel was formed. A leader from the storm’s first flash avoided a region where polarimetric radar suggested wet growth and the resultant absence of noninductive charging of those hydrometeors. Initiation locations of later flashes that propagated into the upper positive charge tracked the descending location of a polarimetric signature of graupel. As the storm decayed, electric fields greater than 160 kV m−1 exceeded the minimum threshold for lightning initiation suggested by the hypothesized runaway breakdown process at 5.5 km MSL, but lightning did not occur. The small spatial extent (≈100 m) of the large electric field may not have been sufficient to allow runaway breakdown to fully develop and initiate lightning.

Corresponding author address: Eric Bruning, Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, and NOAA/OAR National Severe Storms Laboratory, NSSL/FRDD, National Weather Center, 120 David L. Boren Drive, Norman, OK 73072. Email: eric.bruning@noaa.gov

Save
  • Aydin, K., and T. A. Seliga, 1984: Radar polarimetric backscattering properties of conical graupel. J. Atmos. Sci., 41 , 18871892.

  • Beard, K. V., and H. R. Pruppacher, 1969: A determination of the terminal velocity and drag of small water drops by means of a wind tunnel. J. Atmos. Sci., 26 , 10661072.

    • Search Google Scholar
    • Export Citation
  • Brandes, E. A., G. Zhang, and J. Vivekanandan, 2002: Experiments in rainfall estimation with a polarimetric radar in a subtropical environment. J. Appl. Meteor., 41 , 674685.

    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., and V. Chandrasekar, 2001: Polarimetric Doppler Weather Radar: Principles and Applications. Cambridge University Press, 636 pp.

    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., R. M. Rasmussen, and J. Vivekanandan, 1986: Multiparameter radar measurements in Colorado convective storms. Part I: Graupel melting studies. J. Atmos. Sci., 43 , 25452563.

    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., K. Knupp, A. Detwiler, L. Liu, I. J. Caylor, and R. A. Black, 1997: Evolution of a Florida thunderstorm during the Convection and Precipitation/Electrification experiment: The case of 9 August 1991. Mon. Wea. Rev., 125 , 21312160.

    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., V. Chandrasekar, J. Hubbert, E. Gorgucci, W. L. Randeu, and M. Schoenhuber, 2003: Raindrop size distribution in different climatic regimes from disdrometer and dual-polarized radar analysis. J. Atmos. Sci., 60 , 354365.

    • Search Google Scholar
    • Export Citation
  • Byers, H. R., and R. R. Braham, 1949: The Thunderstorm: Report of the Thunderstorm Project. Dept. of Commerce, U.S. Government Printing Office, 287 pp.

    • Search Google Scholar
    • Export Citation
  • Carey, L. D., and S. A. Rutledge, 2000: The relationship between precipitation and lightning in tropical island convection: A C-band polarimetric radar study. Mon. Wea. Rev., 128 , 26872710.

    • Search Google Scholar
    • Export Citation
  • Coleman, L. M., T. C. Marshall, M. Stolzenburg, T. Hamlin, P. R. Krehbiel, W. Rison, and R. J. Thomas, 2003: Effects of charge and electrostatic potential on lightning propagation. J. Geophys. Res., 108 .4298, doi:10.1029/2002JD002718.

    • Search Google Scholar
    • Export Citation
  • Conway, J. W., and D. S. Zrnic, 1993: A study of embryo production and hail growth using dual-doppler and multiparameter radars. Mon. Wea. Rev., 121 , 25112528.

    • Search Google Scholar
    • Export Citation
  • Crum, T. D., and R. L. Alberty, 1993: The WSR-88D and the WSR-88D operational support facility. Bull. Amer. Meteor. Soc., 74 , 16691687.

    • Search Google Scholar
    • Export Citation
  • Cummins, K. L., M. J. Murphy, E. A. Bardo, W. L. Hiscox, R. B. Pyle, and A. E. Pifer, 1998: A combined TOA/MDF technology upgrade of the U.S. National Lightning Detection Network. J. Geophys. Res., 103 , 90359044.

    • Search Google Scholar
    • Export Citation
  • Doviak, R. J., V. N. Bringi, A. V. Ryzhkov, A. Zahrai, and D. S. Zrnic, 2000: Considerations for polarimetric upgrades to operational WSR-88D radars. J. Atmos. Oceanic Technol., 17 , 257278.

    • Search Google Scholar
    • Export Citation
  • Dwyer, J. R., 2003: A fundamental limit on electric fields in air. Geophys. Res. Lett., 30 .2055, doi:10.1029/2003GL017781.

  • Dwyer, J. R., 2005: The initiation of lightning by runaway air breakdown. Geophys. Res. Lett., 32 .L20808, doi:10.1029/2005GL023975.

  • Eack, K. B., W. H. Beasley, W. D. Rust, T. C. Marshall, and M. Stolzenburg, 1996: Initial results from simultaneous observation of X rays and electric fields in a thunderstorm. J. Geophys. Res., 101 , 2963729640.

    • Search Google Scholar
    • Export Citation
  • French, J. R., J. H. Helsdon, A. G. Detwiler, and P. L. Smith, 1996: Microphysical and electrical evolution of a Florida thunderstorm 1. Observations. J. Geophys. Res., 101 , 1896118977.

    • Search Google Scholar
    • Export Citation
  • Goodman, S. J., D. E. Buechler, P. D. Wright, and W. D. Rust, 1988: Lighting and precipitation history of a microburst-producing storm. Geophys. Res. Lett., 15 , 11851188.

    • Search Google Scholar
    • Export Citation
  • Grenet, G., 1948: Essai dexplication de a charge electrique des nuages dorages. Ann. Geophys., 3 , 306307.

  • Gurevich, A. V., and K. P. Zybin, 2005: Runaway breakdown and the mysteries of lightning. Phys. Today, 58 , 3743.

  • Gurevich, A. V., G. M. Milikh, and R. A. Roussel-Dupre, 1992: Runaway electron mechanism of air breakdown and preconditioning during a thunderstorm. Phys. Lett., 165A , 463468.

    • Search Google Scholar
    • Export Citation
  • Gurevich, A. V., G. M. Milikh, and R. A. Roussel-Dupre, 1994: Nonuniform runaway air-breakdown. Phys. Lett., 187A , 197203.

  • Hallett, J., and S. C. Mossop, 1974: Production of secondary ice particles during the riming process. Nature, 249 , 2628.

  • Helsdon Jr., J. H., G. Wu, and R. D. Farley, 1992: An intracloud lightning parameterization scheme for a storm electrification model. J. Geophys. Res., 97 , 58655884.

    • Search Google Scholar
    • Export Citation
  • Herzegh, P. H., and A. R. Jameson, 1992: Observing precipitation through dual-polarization radar measurements. Bull. Amer. Meteor. Soc., 73 , 13651374.

    • Search Google Scholar
    • Export Citation
  • Hock, T. F., and J. L. Franklin, 1999: The NCAR GPS dropwindsonde. Bull. Amer. Meteor. Soc., 80 , 407420.

  • Hoppel, W. A., and B. B. Phillips, 1971: The electrical shielding layer around charged clouds and its role in thunderstorm electricity. J. Atmos. Sci., 28 , 12581271.

    • Search Google Scholar
    • Export Citation
  • Hubbert, J., V. N. Bringi, L. D. Carey, and S. Bolen, 1998: CSU-CHILL polarimetric radar measurements from a severe hail storm in eastern Colorado. J. Appl. Meteor., 37 , 749775.

    • Search Google Scholar
    • Export Citation
  • Jameson, A. R., M. J. Murphy, and E. P. Krider, 1996: Multiple-parameter radar observations of isolated Florida thunderstorms during the onset of electrification. J. Appl. Meteor., 35 , 343354.

    • Search Google Scholar
    • Export Citation
  • Kasemir, H. W., 1960: A contribution to the electrostatic theory of a lightning discharge. J. Geophys. Res., 65 , 18731878.

  • Klazura, G. E., and D. A. Imy, 1993: A description of the initial set of analysis products available from the NEXRAD WSR-88D system. Bull. Amer. Meteor. Soc., 74 , 12931311.

    • Search Google Scholar
    • Export Citation
  • Klett, J. D., 1972: Charge screening layers around electrified clouds. J. Geophys. Res., 77 , 31873195.

  • Knight, N. C., and A. J. Heymsfield, 1983: Measurement and interpretation of hailstone density and terminal velocity. J. Atmos. Sci., 40 , 15101516.

    • Search Google Scholar
    • Export Citation
  • Koch, S. E., M. desJardins, and P. J. Kocin, 1983: An interactive Barnes objective map analysis scheme for use with satellite and conventional data. J. Climate Appl. Meteor., 22 , 14871503.

    • Search Google Scholar
    • Export Citation
  • MacGorman, D. R., and W. D. Rust, 1998: The Electrical Nature of Storms. Oxford University Press, 422 pp.

  • MacGorman, D. R., A. A. Few, and T. L. Teer, 1981: Layered lightning activity. J. Geophys. Res., 86 , 99009910.

  • Mansell, E. R., D. R. MacGorman, C. L. Ziegler, and J. M. Straka, 2005: Charge structure and lightning sensitivity in a simulated multicell thunderstorm. J. Geophys. Res., 110 .D12101, doi:10.1029/2004JD005287.

    • Search Google Scholar
    • Export Citation
  • Marshall, T. C., M. P. McCarthy, and W. D. Rust, 1995: Electric field magnitudes and lightning initiation in thunderstorms. J. Geophys. Res., 100 , 70977103.

    • Search Google Scholar
    • Export Citation
  • Marshall, T. C., M. Stolzenburg, C. R. Maggio, L. M. Coleman, P. R. Krehbiel, T. Hamlin, R. J. Thomas, and W. Rison, 2005: Observed electric fields associated with lightning initiation. Geophys. Res. Lett., 32 .L03813, doi:10.1029/2004GL021802.

    • Search Google Scholar
    • Export Citation
  • Marwitz, J. D., 1972: The structure and motion of severe hailstorms. Part II: Multi-cell storms. J. Appl. Meteor., 11 , 180188.

  • Mazur, V., and L. H. Ruhnke, 1993: Common physical processes in natural and artificially triggered lightning. J. Geophys. Res., 98 , 1291312930.

    • Search Google Scholar
    • Export Citation
  • McCarthy, M. P., and G. K. Parks, 1992: On the modulation of X ray fluxes in thunderstorms. J. Geophys. Res., 97 , 58575864.

  • Meischner, P. F., 1991: A squall line in southern Germany: Kinematics and precipitation formation as deduced by advanced polarimetric and Doppler radar measurements. Mon. Wea. Rev., 119 , 678701.

    • Search Google Scholar
    • Export Citation
  • Meischner, P. F., V. N. Bringi, M. Hagen, and H. Höller, 1991: Multiparameter radar characterization of a melting layer compared with in situ measurements. Preprints, 25th Int. Conf. on Radar Meteorology, Paris, France, Amer. Meteor. Soc, 721–724.

  • Moore, C. B., B. Vonnegut, E. A. Vrablik, and D. A. McCaig, 1964: Gushes of rain and hail after lightning. J. Atmos. Sci., 21 , 646665.

    • Search Google Scholar
    • Export Citation
  • Rauber, R. M., and A. Tokay, 1991: An explanation for the existence of supercooled water at the top of cold clouds. J. Atmos. Sci., 48 , 10051023.

    • Search Google Scholar
    • Export Citation
  • Roussel-Dupre, R. A., A. V. Gurevich, T. Tunnel, and G. M. Milikh, 1992: Kinetic theory of runaway air breakdown. Phys. Rev., 49E , 22572271.

    • Search Google Scholar
    • Export Citation
  • Rust, W. D., and Coauthors, 2005: Inverted-polarity electrical structures in thunderstorms in the Severe Thunderstorm Electrification and Precipitation Study. Atmos. Res., 76 , 247271.

    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., S. E. Giangrande, and T. J. Schuur, 2005a: Rainfall estimation with a polarimetric prototype of WSR-88D. J. Appl. Meteor., 44 , 502515.

    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., T. J. Schuur, D. W. Burgess, P. L. Heinselman, S. E. Giangrade, and D. S. Zrnic, 2005b: The Joint Polarization Experiment: Polarimetric rainfall measurements and hydrometeor classification. Bull. Amer. Meteor. Soc., 86 , 809824.

    • Search Google Scholar
    • Export Citation
  • Saunders, C. P. R., 1993: A review of thunderstorm electrification processes. J. Appl. Meteor., 32 , 642655.

  • Saunders, C. P. R., and S. L. Peck, 1998: Laboratory studies of the influence of the rime accretion rate on charge transfer during crystal/graupel collisions. J. Geophys. Res., 103 , 1394913956.

    • Search Google Scholar
    • Export Citation
  • Scharfenberg, K. A., and Coauthors, 2005: The Joint Polarization Experiment: Polarimetric radar in forecasting and warning decision making. Wea. Forecasting, 20 , 775788.

    • Search Google Scholar
    • Export Citation
  • Schuur, T. J., W. D. Rust, B. F. Smull, and T. C. Marshall, 1991: Electrical and kinematic structure of the stratiform precipitation region trailing an Oklahoma squall line. J. Atmos. Sci., 48 , 825842.

    • Search Google Scholar
    • Export Citation
  • Schuur, T. J., A. V. Ryzhkov, D. S. Zrnic, and M. Schönhuber, 2001: Drop size distributions measured by a 2D video disdrometer: Comparison with dual-polarization radar data. J. Appl. Meteor., 40 , 10191034.

    • Search Google Scholar
    • Export Citation
  • Schuur, T. J., A. V. Ryzhkov, P. Heinselman, D. Zrnic, D. Burgess, and K. Scharfenberg, 2003: Observations and classification of echoes with the polarimetric WSR-88D radar. NOAA Tech. Rep., 46 pp. [Available from the National Severe Storms Laboratory, Norman, OK 73069.].

  • Shao, X. M., and P. R. Krehbiel, 1996: The spatial and temporal development of intracloud lightning. J. Geophys. Res., 101 , 2664126668.

    • Search Google Scholar
    • Export Citation
  • Shepherd, T. R., W. D. Rust, and T. C. Marshall, 1996: Electric fields and charges near 0°C in stratiform clouds. Mon. Wea. Rev., 124 , 919938.

    • Search Google Scholar
    • Export Citation
  • Smith, P. L., D. J. Musil, A. G. Detwiler, and R. Ramachandran, 1999: Observations of mixed-phase precipitation within a CaPE thunderstorm. J. Appl. Meteor., 38 , 145155.

    • Search Google Scholar
    • Export Citation
  • Stith, J. L., J. E. Dye, A. Bansemer, A. J. Heymsfield, C. A. Grainger, W. A. Petersen, and R. Cifelli, 2002: Microphysical observations of tropical clouds. J. Appl. Meteor., 41 , 97117.

    • Search Google Scholar
    • Export Citation
  • Stolzenburg, M., W. D. Rust, and T. C. Marshall, 1998: Electrical structure in thunderstorm convective regions 3. Synthesis. J. Geophys. Res., 103 , 1409714108.

    • Search Google Scholar
    • Export Citation
  • Straka, J. M., D. S. Zrnic, and A. V. Ryzhkov, 2000: Bulk hydrometeor classification and quantification using polarimetric radar data: Synthesis of relations. J. Appl. Meteor., 39 , 13411372.

    • Search Google Scholar
    • Export Citation
  • Takahashi, T., 1978: Riming electrification as a charge generation mechanism in thunderstorms. J. Atmos. Sci., 35 , 15361548.

  • Takahashi, T., and T. D. Keenan, 2004: Hydrometeor mass, number, and space charge distribution in a “Hector” squall line. J. Geophys. Res., 109 .D16208, doi:10.1029/2004JD004667.

    • Search Google Scholar
    • Export Citation
  • Thomas, R. J., P. R. Krehbiel, W. Rison, T. Hamlin, J. Harlin, and D. Shown, 2001: Observations of VHF source powers radiated by lightning. Geophys. Res. Lett., 28 , 143146.

    • Search Google Scholar
    • Export Citation
  • Thomas, R. J., P. R. Krehbiel, W. Rison, S. J. Hunyady, W. P. Winn, T. Hamlin, and J. Harlin, 2004: Accuracy of the lightning mapping array. J. Geophys. Res., 109 .D14207, doi:10.1029/2004JD004549.

    • Search Google Scholar
    • Export Citation
  • Trapp, R. J., and C. A. Doswell III, 2000: Radar data objective analysis. J. Atmos. Oceanic Technol., 17 , 105120.

  • Tuttle, J. D., V. N. Bringi, H. D. Orville, and F. J. Kopp, 1989: Multiparameter radar study of a microburst: Comparison with model results. J. Atmos. Sci., 46 , 601620.

    • Search Google Scholar
    • Export Citation
  • Vonnegut, B., C. B. Moore, R. P. Espinola, and H. H. Blau Jr., 1966: Electric potential gradients above thunderstorms. J. Atmos. Sci., 23 , 764770.

    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., and J. B. Klemp, 1982: The dependence of numerically simulated convective storms on vertical wind shear and buoyancy. Mon. Wea. Rev., 110 , 504520.

    • Search Google Scholar
    • Export Citation
  • Wiens, K. C., S. A. Rutledge, and S. A. Tessendorf, 2005: The 29 June 2000 supercell observed during STEPS. Part II: Lightning and charge structure. J. Atmos. Sci., 62 , 41514177.

    • Search Google Scholar
    • Export Citation
  • Williams, E. R., C. M. Cooke, and K. A. Wright, 1985: Electrical discharge propagation in and around space charge clouds. J. Geophys. Res., 90 , 60596070.

    • Search Google Scholar
    • Export Citation
  • Willis, P. T., and A. J. Heymsfield, 1989: Structure of the melting layer in mesoscale convective system stratiform precipitation. J. Atmos. Sci., 46 , 20082025.

    • Search Google Scholar
    • Export Citation
  • Winn, W. P., and L. G. Byerly III, 1975: Electric field growth in thunderclouds. Quart. J. Roy. Meteor. Soc., 101 , 979994.

  • Ziegler, C. L., and D. R. MacGorman, 1994: Observed lightning morphology relative to modeled space charge and electric field distributions in a tornadic storm. J. Atmos. Sci., 51 , 833851.

    • Search Google Scholar
    • Export Citation
  • Ziegler, C. L., D. R. MacGorman, J. E. Dye, and P. S. Ray, 1991: A model evaluation of noninductive graupel-ice charging in the early electrification of a mountain thunderstorm. J. Geophys. Res., 96 , 1283312855.

    • Search Google Scholar
    • Export Citation
  • Zipser, E. J., and K. R. Lutz, 1994: The vertical profile of radar reflectivity of convective cells: A strong indicator of storm intensity and lightning probability? Mon. Wea. Rev., 122 , 17511759.

    • Search Google Scholar
    • Export Citation
  • Zrnic, D. S., and A. V. Ryzhkov, 1999: Polarimetry for weather surveillance radars. Bull. Amer. Meteor. Soc., 80 , 389406.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 758 428 36
PDF Downloads 326 132 7