Generalization of the Discrete Brier and Ranked Probability Skill Scores for Weighted Multimodel Ensemble Forecasts

Andreas P. Weigel Federal Office of Meteorology and Climatology, MeteoSwiss, Zürich, Switzerland

Search for other papers by Andreas P. Weigel in
Current site
Google Scholar
PubMed
Close
,
Mark A. Liniger Federal Office of Meteorology and Climatology, MeteoSwiss, Zürich, Switzerland

Search for other papers by Mark A. Liniger in
Current site
Google Scholar
PubMed
Close
, and
Christof Appenzeller Federal Office of Meteorology and Climatology, MeteoSwiss, Zürich, Switzerland

Search for other papers by Christof Appenzeller in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This note describes how the widely used Brier and ranked probability skill scores (BSS and RPSS, respectively) can be correctly applied to quantify the potential skill of probabilistic multimodel ensemble forecasts. It builds upon the study of Weigel et al. where a revised RPSS, the so-called discrete ranked probability skill score (RPSSD), was derived, circumventing the known negative bias of the RPSS for small ensemble sizes. Since the BSS is a special case of the RPSS, a debiased discrete Brier skill score (BSSD) could be formulated in the same way. Here, the approach of Weigel et al., which so far was only applicable to single model ensembles, is generalized to weighted multimodel ensemble forecasts. By introducing an “effective ensemble size” characterizing the multimodel, the new generalized RPSSD can be expressed such that its structure becomes equivalent to the single model case. This is of practical importance for multimodel assessment studies, where the consequences of varying effective ensemble size need to be clearly distinguished from the true benefits of multimodel combination. The performance of the new generalized RPSSD formulation is illustrated in examples of weighted multimodel ensemble forecasts, both in a synthetic random forecasting context, and with real seasonal forecasts of operational models. A central conclusion of this study is that, for small ensemble sizes, multimodel assessment studies should not only be carried out on the basis of the classical RPSS, since true changes in predictability may be hidden by bias effects—a deficiency that can be overcome with the new generalized RPSSD.

Corresponding author address: Andreas Weigel, Federal Office of Meteorology and Climatology, MeteoSwiss, Krähbühlstrasse 58, P.O. Box 514, CH-8044 Zürich, Switzerland. Email: andreas.weigel@meteoswiss.ch

Abstract

This note describes how the widely used Brier and ranked probability skill scores (BSS and RPSS, respectively) can be correctly applied to quantify the potential skill of probabilistic multimodel ensemble forecasts. It builds upon the study of Weigel et al. where a revised RPSS, the so-called discrete ranked probability skill score (RPSSD), was derived, circumventing the known negative bias of the RPSS for small ensemble sizes. Since the BSS is a special case of the RPSS, a debiased discrete Brier skill score (BSSD) could be formulated in the same way. Here, the approach of Weigel et al., which so far was only applicable to single model ensembles, is generalized to weighted multimodel ensemble forecasts. By introducing an “effective ensemble size” characterizing the multimodel, the new generalized RPSSD can be expressed such that its structure becomes equivalent to the single model case. This is of practical importance for multimodel assessment studies, where the consequences of varying effective ensemble size need to be clearly distinguished from the true benefits of multimodel combination. The performance of the new generalized RPSSD formulation is illustrated in examples of weighted multimodel ensemble forecasts, both in a synthetic random forecasting context, and with real seasonal forecasts of operational models. A central conclusion of this study is that, for small ensemble sizes, multimodel assessment studies should not only be carried out on the basis of the classical RPSS, since true changes in predictability may be hidden by bias effects—a deficiency that can be overcome with the new generalized RPSSD.

Corresponding author address: Andreas Weigel, Federal Office of Meteorology and Climatology, MeteoSwiss, Krähbühlstrasse 58, P.O. Box 514, CH-8044 Zürich, Switzerland. Email: andreas.weigel@meteoswiss.ch

Save
  • Anderson, D. L. T., and Coauthors, 2003: Comparison of the ECMWF seasonal forecast systems 1 and 2, including the relative performance for the 1997/8 El Niño ECMWF Tech. Memo 404, 93 pp.

  • Brier, G. W., 1950: Verification of forecasts expressed in terms of probability. Mon. Wea. Rev., 78 , 13.

  • Buizza, R., and T. N. Palmer, 1998: Impact of ensemble size on ensemble prediction. Mon. Wea. Rev., 126 , 25082518.

  • Doblas-Reyes, F. J., R. Hagedorn, and T. N. Palmer, 2005: The rational behind the success of multi-model ensembles in seasonal forecasting. Part II: Calibration and combination. Tellus, 57A , 234252.

    • Search Google Scholar
    • Export Citation
  • Epstein, E. S., 1969: A scoring system for probability forecasts of ranked categories. J. Appl. Meteor., 8 , 985987.

  • Graham, R. J., M. Gordon, P. J. McLean, S. Ineson, M. R. Huddleston, M. K. Davey, A. Brookshaw, and R. T. H. Barnes, 2005: A performance comparison of coupled and uncoupled versions of the Met Office seasonal prediction general circulation model. Tellus, 57A , 320339.

    • Search Google Scholar
    • Export Citation
  • Hagedorn, R., F. J. Doblas-Reyes, and T. N. Palmer, 2005: The rationale behind the success of multi-model ensembles in seasonal forecasting. Part I: Basic concept. Tellus, 57A , 219233.

    • Search Google Scholar
    • Export Citation
  • Krishnamurti, T. N., C. M. Kishtawal, T. E. LaRow, D. R. Bachiochi, Z. Zhang, C. E. Williford, S. Gadgil, and S. Surendran, 1999: Improved weather and seasonal climate forecasts from multimodel superensemble. Science, 285 , 15481550.

    • Search Google Scholar
    • Export Citation
  • Kumar, A., A. G. Barnston, and M. P. Hoerling, 2001: Seasonal predictions, probabilistic verifications, and ensemble size. J. Climate, 14 , 16711676.

    • Search Google Scholar
    • Export Citation
  • Marsigli, C., A. Montani, F. Nerozzi, and T. Paccagnella, 2004: Probabilistic high-resolution forecasts of heavy precipitation over Central Europe. Nat. Hazards Earth Syst. Sci., 4 , 315322.

    • Search Google Scholar
    • Export Citation
  • Mason, S. J., 2004: On using “climatology” as a reference strategy in the Brier and ranked probability skill scores. Mon. Wea. Rev., 132 , 18911895.

    • Search Google Scholar
    • Export Citation
  • Müller, W. A., C. Appenzeller, F. J. Doblas-Reyes, and M. A. Liniger, 2005: A debiased ranked probability skill score to evaluate probabilistic ensemble forecasts with small ensemble sizes. J. Climate, 18 , 15131523.

    • Search Google Scholar
    • Export Citation
  • Murphy, A. H., 1969: On the ranked probability skill score. J. Appl. Meteor., 8 , 988989.

  • Murphy, A. H., 1971: A note on the ranked probability skill score. J. Appl. Meteor., 10 , 155156.

  • Palmer, T. N., and Coauthors, 2004: Development of a European Multimodel Ensemble System for Seasonal-to-Interannual Prediction (DEMETER). Bull. Amer. Meteor. Soc., 85 , 853872.

    • Search Google Scholar
    • Export Citation
  • Rajagopalan, B., U. Lall, and S. E. Zebiak, 2002: Categorical climate forecasts through regularization and optimal combination of multiple GCM ensembles. Mon. Wea. Rev., 130 , 17921811.

    • Search Google Scholar
    • Export Citation
  • Richardson, D. S., 2001: Measures of skill and value of ensemble prediction systems, their interrelationship and the effect of ensemble size. Quart. J. Roy. Meteor. Soc., 127 , 24732489.

    • Search Google Scholar
    • Export Citation
  • Robertson, A. W., U. Lall, S. E. Zebiak, and L. Goddard, 2004: Improved combination of multiple atmospheric GCM ensembles for seasonal prediction. Mon. Wea. Rev., 132 , 27322744.

    • Search Google Scholar
    • Export Citation
  • Stephenson, D. B., C. A. S. Coelho, F. J. Doblas-Reyes, and M. Balmaseda, 2005: Forecast assimilation: A unified framework for the combination of multi-model weather and climate predictions. Tellus, 57A , 253264.

    • Search Google Scholar
    • Export Citation
  • Toth, Z., O. Talagrand, G. Candille, and Y. Zhu, 2003: Probability and ensemble forecasts. Forecast VerificationA Practitioner’s Guide in Atmospheric Science, I. T. Joliffe and D. B. Stephenson, Eds., John Wiley & Sons, 137–163.

    • Search Google Scholar
    • Export Citation
  • Uppala, S. M., and Coauthors, 2005: The ERA-40 re-analysis. Quart. J. Roy. Meteor. Soc., 131 , 29613012.

  • Walser, A., M. Arpagaus, C. Appenzeller, and M. Leutbecher, 2006: The impact of moist singular vectors and horizontal resolution on short-range limited-area ensemble forecasts for two European winter storms. Mon. Wea. Rev., 134 , 28772887.

    • Search Google Scholar
    • Export Citation
  • Weigel, A. P., M. A. Liniger, and C. Appenzeller, 2007: The discrete Brier and ranked probability skill scores. Mon. Wea. Rev., 135 , 118124.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 1995: Statistical Methods in the Atmospheric Sciences. International Geophysics Series, Vol. 59, Academic Press, 467 pp.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 236 54 4
PDF Downloads 146 32 4