The Dryline on 22 May 2002 during IHOP: Ground-Radar and In Situ Data Analyses of the Dryline and Boundary Layer Evolution

Michael S. Buban Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, Norman, Oklahoma

Search for other papers by Michael S. Buban in
Current site
Google Scholar
PubMed
Close
,
Conrad L. Ziegler NOAA/National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by Conrad L. Ziegler in
Current site
Google Scholar
PubMed
Close
,
Erik N. Rasmussen Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, Norman, Oklahoma

Search for other papers by Erik N. Rasmussen in
Current site
Google Scholar
PubMed
Close
, and
Yvette P. Richardson Department of Meteorology, The Pennsylvania State University, University Park, Pennsylvania

Search for other papers by Yvette P. Richardson in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

On the afternoon and evening of 22 May 2002, high-resolution observations of the boundary layer (BL) and a dryline were obtained in the eastern Oklahoma and Texas panhandles during the International H2O Project. Using overdetermined multiple-Doppler radar syntheses in concert with a Lagrangian analysis of water vapor and temperature fields, the 3D kinematic and thermodynamic structure of the dryline and surrounding BL have been analyzed over a nearly 2-h period. The dryline is resolved as a strong (2–4 g kg−1 km−1) gradient of water vapor mixing ratio that resides in a nearly north–south-oriented zone of convergence. Maintained through frontogenesis, the dryline is also located within a gradient of virtual potential temperature, which induces a persistent, solenoidally forced secondary circulation. Initially quasi-stationary, the dryline retrogrades to the west during early evening and displays complicated substructures including small wavelike perturbations that travel from south to north at nearly the speed of the mean BL flow. A second, minor dryline has similar characteristics to the first, but has weaker gradients and circulations. The BL adjacent to the dryline exhibits complicated structures, consisting of combinations of open cells, horizontal convective rolls, and transverse rolls. Strong convergence and vertical motion at the dryline act to lift moisture, and high-based cumulus clouds are observed in the analysis domain. Although the top of the analysis domain is below the lifted condensation level height, vertical extrapolation of the moisture fields generally agrees with cloud locations. Mesoscale vortices that move along the dryline induce a transient eastward dryline motion due to the eastward advection of dry air following misocyclone passage. Refractivity-based moisture and differential reflectivity analyses are used to help interpret the Lagrangian analyses.

Corresponding author address: Michael S. Buban, Forecast Research and Development Division, National Severe Storms Laboratory, 120 David L. Boren Blvd., Norman, OK 73072. Email: michael.buban@noaa.gov

Abstract

On the afternoon and evening of 22 May 2002, high-resolution observations of the boundary layer (BL) and a dryline were obtained in the eastern Oklahoma and Texas panhandles during the International H2O Project. Using overdetermined multiple-Doppler radar syntheses in concert with a Lagrangian analysis of water vapor and temperature fields, the 3D kinematic and thermodynamic structure of the dryline and surrounding BL have been analyzed over a nearly 2-h period. The dryline is resolved as a strong (2–4 g kg−1 km−1) gradient of water vapor mixing ratio that resides in a nearly north–south-oriented zone of convergence. Maintained through frontogenesis, the dryline is also located within a gradient of virtual potential temperature, which induces a persistent, solenoidally forced secondary circulation. Initially quasi-stationary, the dryline retrogrades to the west during early evening and displays complicated substructures including small wavelike perturbations that travel from south to north at nearly the speed of the mean BL flow. A second, minor dryline has similar characteristics to the first, but has weaker gradients and circulations. The BL adjacent to the dryline exhibits complicated structures, consisting of combinations of open cells, horizontal convective rolls, and transverse rolls. Strong convergence and vertical motion at the dryline act to lift moisture, and high-based cumulus clouds are observed in the analysis domain. Although the top of the analysis domain is below the lifted condensation level height, vertical extrapolation of the moisture fields generally agrees with cloud locations. Mesoscale vortices that move along the dryline induce a transient eastward dryline motion due to the eastward advection of dry air following misocyclone passage. Refractivity-based moisture and differential reflectivity analyses are used to help interpret the Lagrangian analyses.

Corresponding author address: Michael S. Buban, Forecast Research and Development Division, National Severe Storms Laboratory, 120 David L. Boren Blvd., Norman, OK 73072. Email: michael.buban@noaa.gov

Save
  • André, J. C., G. De Moor, P. Lacarrère, and R. du Vachat, 1978: Modeling the 24-hour evolution of the mean and turbulent structures of the planetary boundary layer. J. Atmos. Sci., 35 , 18611883.

    • Search Google Scholar
    • Export Citation
  • Anthes, R. A., Y. Kuo, S. G. Benjamin, and Y. Li, 1982: The evolution of the mesoscale environment of severe local storms: preliminary modeling results. Mon. Wea. Rev., 110 , 11871213.

    • Search Google Scholar
    • Export Citation
  • Arnott, N. R., Y. P. Richardson, J. M. Wurman, and J. Lutz, 2003: A solar alignment technique for determining mobile radar pointing angles. Preprints, 31st Int. Conf. on Radar Meteorology, Seattle, WA, Amer. Meteor. Soc., 492–494.

  • Atkins, N. T., R. M. Wakimoto, and C. L. Ziegler, 1998: Observations of the finescale structure of the dryline during VORTEX 95. Mon. Wea. Rev., 126 , 525549.

    • Search Google Scholar
    • Export Citation
  • Barnes, S. L., 1973: Mesoscale objective analysis using weighted time-series observations. NOAA Tech. Memo. ERL NSSL-62, National Severe Storms Laboratory, 60 pp.

  • Bean, B. R., and E. J. Dutton, 1968: Radio Meteorology. National Bureau of Standards Monogr., No. 92, National Bureau of Standards, 435 pp.

  • Betts, A. K., 1984: Boundary layer thermodynamics of a High Plains severe storm. Mon. Wea. Rev., 112 , 21992211.

  • Biggerstaff, M., and Coauthors, 2005: The Shared Mobile Atmospheric Research and Teaching (SMART) radar: A collaboration to enhance research and teaching. Bull. Amer. Meteor. Soc., 86 , 12631274.

    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., 1993: Synoptic-Dynamic Meteorology in Midlatitudes. Vol. 2. Observations and Theory of Weather Systems, Oxford University Press, 594 pp.

    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., and S. S. Parker, 1993: Modes of isolated, severe convective storm formation along the dryline. Mon. Wea. Rev., 121 , 13541372.

    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., E. W. McCaul Jr., G. P. Byrd, and G. R. Woodall, 1988: Mobile sounding observations of a tornadic storm near the dryline: The Canadian, Texas Storm of 7 May 1986. Mon. Wea. Rev., 116 , 17901804.

    • Search Google Scholar
    • Export Citation
  • Brown, R. A., 1980: Longitudinal instabilities and secondary flows in the planetary boundary layer: A review. Rev. Geophys. Space Phys., 18 , 683697.

    • Search Google Scholar
    • Export Citation
  • Brümmer, B., 1985: Structure, dynamics, and energetics of boundary layer rolls from KonTur aircraft observations. Contrib. Atmos. Phys., 58 , 237254.

    • Search Google Scholar
    • Export Citation
  • Buban, M., 2005: The dryline on 22 May 2002 during IHOP: Ground-radar and in situ data analyses of the dryline and boundary layer evolution. M.S. thesis, University of Oklahoma, Norman, 73 pp. [Available from UMI, 300 North Zeeb Road, P.O. Box 1346, Ann Arbor, MI 48106-1346.].

  • Carbone, R. E., 1982: A severe frontal rainband. Part I: Stormwide hydrodynamic structure. J. Atmos. Sci., 39 , 258279.

  • Crawford, T. M., and H. B. Bluestein, 1997: Characteristics of dryline passage during COPS-91. Mon. Wea. Rev., 125 , 463477.

  • Crum, T. D., R. E. Saffle, and J. W. Wilson, 1998: An update on the NEXRAD program and future WSR-88D support to operations. Wea. Forecasting, 13 , 253262.

    • Search Google Scholar
    • Export Citation
  • Demoz, B., and Coauthors, 2006: The dryline on 22 May 2002 during IHOP 2002: Convective-scale measurements at the profiling site. Mon. Wea. Rev., 134 , 294310.

    • Search Google Scholar
    • Export Citation
  • Doswell III, C. A., 1985: Reply. J. Atmos. Sci., 42 , 20762079.

  • Fabry, F., 2004: Meteorological value of ground target measurements by radar. J. Atmos. Oceanic Technol., 21 , 560573.

  • Fabry, F., C. Frush, I. Zawadzk, and A. Kilambi, 1997: On the extraction of near-surface index of refraction using radar phase measurements from ground targets. J. Atmos. Oceanic Technol., 14 , 978987.

    • Search Google Scholar
    • Export Citation
  • Geerts, B., and Q. Miao, 2005a: The use of millimeter Doppler radar echoes to estimate vertical air velocities in the fair-weather convective boundary layer. J. Atmos. Oceanic Technol., 22 , 225246.

    • Search Google Scholar
    • Export Citation
  • Geerts, B., and Q. Miao, 2005b: A simple numerical model of the flight behavior of small insects in the atmospheric convective boundary layer. Environ. Entomol., 34 , 353360.

    • Search Google Scholar
    • Export Citation
  • Gossard, E., and W. Moninger, 1975: The influence of a capping inversion on the dynamic and convective instability of a boundary layer model with shear. J. Atmos. Sci., 32 , 21112124.

    • Search Google Scholar
    • Export Citation
  • Hane, C. E., C. L. Ziegler, and H. B. Bluestein, 1993: Investigation of the dryline and convective storms initiated along the dryline: Field experiments during COPS–91. Bull. Amer. Meteor. Soc., 74 , 21332145.

    • Search Google Scholar
    • Export Citation
  • Hane, C. E., H. B. Bluestein, T. M. Crawford, M. E. Baldwin, and R. M. Rabin, 1997: Severe thunderstorm development in relation to along-dryline variability: A case study. Mon. Wea. Rev., 125 , 231251.

    • Search Google Scholar
    • Export Citation
  • Hane, C. E., M. E. Baldwin, H. B. Bluestein, T. M. Crawford, and R. M. Rabin, 2001: A case study of severe storm development along a dryline within a synoptically active environment. Part I: Dryline motion and an Eta model forecast. Mon. Wea. Rev., 129 , 21832204.

    • Search Google Scholar
    • Export Citation
  • Houze Jr., R. A., 1993: Cloud Dynamics. Academic Press, 573 pp.

  • Isard, S. A., M. E. Irwin, and S. E. Hollinger, 1990: Vertical distribution of aphids (Homoptera: Aphididae) in the planetary boundary layer. Environ. Entomol., 19 , 14731484.

    • Search Google Scholar
    • Export Citation
  • Johns, R. H., and C. A. Doswell III, 1992: Severe local storms forecasting. Wea. Forecasting, 7 , 588612.

  • Johnson, C. G., 1957: The vertical distribution of aphids in the air and the temperature lapse rate. Quart. J. Roy. Meteor. Soc., 83 , 194201.

    • Search Google Scholar
    • Export Citation
  • Kanak, K. M., D. K. Lilly, and J. T. Snow, 2000: The formation of vertical vortices in the convective boundary layer. Quart. J. Roy. Meteor. Soc., 126 , 27892810.

    • Search Google Scholar
    • Export Citation
  • Karan, H., and K. Knupp, 2006: Mobile Integrated Profiler System (MIPS) observations of low-level convergent boundaries during IHOP. Mon. Wea. Rev., 134 , 92112.

    • Search Google Scholar
    • Export Citation
  • Kingsmill, D. E., 1995: Convection initiation associated with a sea-breeze front, a gust front, and their collision. Mon. Wea. Rev., 123 , 29132933.

    • Search Google Scholar
    • Export Citation
  • Koch, S. E., and J. McCarthy, 1982: The evolution of an Oklahoma dryline. Part II: Boundary-layer forcing of mesoconvective systems. J. Atmos. Sci., 39 , 237257.

    • Search Google Scholar
    • Export Citation
  • Koch, S. E., M. DesJardins, and P. Kocin, 1983: An interactive Barnes objective map analysis scheme for use with satellite and conventional data. J. Climate Appl. Meteor., 22 , 14871503.

    • Search Google Scholar
    • Export Citation
  • Koch, S. E., 1979: Mesoscale gravity waves as a possible trigger for severe convection along a dryline. Ph.D. dissertation, University of Oklahoma, 195 pp. [Available from UMI, 300 North Zeeb Road, P.O. Box 1346, Ann Arbor, MI 48106-1346.].

  • Kundu, P. K., 2002: Fluid Mechanics. Academic Press, 730 pp.

  • Laird, N. F., D. A. R. Kristovich, R. M. Rauber, H. T. Ochs III, and L. J. Miller, 1995: The Cape Canaveral sea and river breezes: Kinematic structure and convective initiation. Mon. Wea. Rev., 123 , 29422956.

    • Search Google Scholar
    • Export Citation
  • Lilly, D. K., 1966: On the instability of Ekman boundary flow. J. Atmos. Sci., 23 , 481494.

  • Mahoney III, W. P., 1988: Gust front characteristics and the kinematics associated with interacting thunderstorm outflows. Mon. Wea. Rev., 116 , 14741492.

    • Search Google Scholar
    • Export Citation
  • Marquis, J., Y. P. Richardson, and J. M. Wurman, 2007: Kinematic observations of misocyclones along boundaries during IHOP. Mon. Wea. Rev., 135 , 17491768.

    • Search Google Scholar
    • Export Citation
  • McCarthy, J., and S. E. Koch, 1982: The evolution of an Oklahoma dryline. Part I: A meso- and subsynoptic-scale analysis. J. Atmos. Sci., 39 , 225236.

    • Search Google Scholar
    • Export Citation
  • McNulty, R. P., 1995: Severe and convective weather: A central region forecasting challenge. Wea. Forecasting, 10 , 187202.

  • Mohr, C. G., L. J. Miller, R. L. Vaughan, and H. W. Frank, 1986: The merger of mesoscale datasets into a common Cartesian format for efficient and systematic analyses. J. Atmos. Oceanic Technol., 3 , 144161.

    • Search Google Scholar
    • Export Citation
  • Nielsen, J. W., and P. P. Neilley, 1990: The vertical structure of New England coastal fronts. Mon. Wea. Rev., 118 , 17931807.

  • Ogura, Y., and Y. Chen, 1977: A life history of an intense mesoscale convective storm in Oklahoma. J. Atmos. Sci., 34 , 14581476.

  • Ogura, Y., H. Juang, K. Zhang, and S. Soong, 1982: Possible triggering mechanisms for severe storms in SESAME-AVE IV (9–10 May1979). Bull. Amer. Meteor. Soc., 63 , 503515.

    • Search Google Scholar
    • Export Citation
  • Oye, R., C. Mueller, and S. Smith, 1995: Software for radar translation, visualization, editing, and interpolation. Preprints, 27th Conf. on Radar Meteorology, Vail, CO, Amer. Meteor. Soc., 359–361.

  • Parsons, D. B., M. A. Shapiro, R. M. Hardesty, R. J. Zamora, and J. M. Intrieri, 1991: The finescale structure of a west Texas dryline. Mon. Wea. Rev., 119 , 12421258.

    • Search Google Scholar
    • Export Citation
  • Pielke Sr, R. A., 1984: Mesoscale Meteorological Modeling. Academic Press, 612 pp.

  • Pietrycha, A. E., and E. N. Rasmussen, 2004: Finescale surface observations of the dryline: A mobile mesonet perspective. Wea. Forecasting, 19 , 10751088.

    • Search Google Scholar
    • Export Citation
  • Rasmussen, N. E., R. Davies-Jones, C. A. Doswell Jr., F. H. Carr, M. D. Eilts, D. R. MacGorman, J. M. Straka, and F. H. Carr, 1994: Verification of the Origins of Rotation in Tornadoes Experiment: VORTEX. Bull. Amer. Meteor. Soc., 75 , 9951006.

    • Search Google Scholar
    • Export Citation
  • Rhea, J. O., 1966: A study of thunderstorm formation along drylines. J. Appl. Meteor., 5 , 5863.

  • Rust, W. D., R. P. Davies-Jones, D. W. Burgess, R. A. Maddox, L. C. Showell, T. C. Marshall, and D. K. Lauritsen, 1990: Testing a mobile version of a cross-chain Loran atmospheric sounding system (M-CLASS). Bull. Amer. Meteor. Soc., 71 , 173180.

    • Search Google Scholar
    • Export Citation
  • Saffle, R. E., M. J. Istok, and G. Cate, 2006: NEXRAD product improvement—Expanding science horizons. Preprints, 22d Conf. on Interactive Information Processing Systems, Atlanta, GA, Amer. Meteor. Soc., CD-ROM, 9.1.

  • Schaefer, J. T., 1974: A simulative model of dryline motion. J. Atmos. Sci., 31 , 956964.

  • Shirer, H. N., 1986: On cloud street development in three dimensions: Parallel and Rayleigh instabilities. Contrib. Atmos. Phys., 59 , 126149.

    • Search Google Scholar
    • Export Citation
  • Stensrud, D. J., and H. N. Shirer, 1988: Development of boundary layer rolls from dynamic instabilities. J. Atmos. Sci., 45 , 10071019.

    • Search Google Scholar
    • Export Citation
  • Straka, J. M., E. N. Rasmussen, and S. E. Fredrickson, 1996: A mobile mesonet for finescale meteorological observations. J. Atmos. Oceanic Technol., 13 , 921936.

    • Search Google Scholar
    • Export Citation
  • Sun, W-Y., 1987: Mesoscale convection along the dryline. J. Atmos. Sci., 44 , 13941403.

  • Sun, W-Y., and Y. Ogura, 1979: Boundary layer forcing as a possible trigger to a squall-line formation. J. Atmos. Sci., 36 , 235254.

  • Sun, W-Y., and C. Wu, 1992: Formation and diurnal variation of the dryline. J. Atmos. Sci., 49 , 16061619.

  • Wakimoto, R. M., 1982: The life cycle of thunderstorm gust fronts as viewed with Doppler radar and rawinsonde data. Mon. Wea. Rev., 110 , 10601082.

    • Search Google Scholar
    • Export Citation
  • Wakimoto, R. M., C. Liu, and H. Cai, 1998: The Garden City, Kansas, storm during VORTEX 95. Part I: Observations of the storm’s lifecycle and tornadogenesis. Mon. Wea. Rev., 126 , 372392.

    • Search Google Scholar
    • Export Citation
  • Weckwerth, T. M., and D. B. Parsons, 2006: A review of convection initiation and motivation for IHOP_2002. Mon. Wea. Rev., 134 , 522.

  • Weckwerth, T. M., J. W. Wilson, R. M. Wakimoto, and N. A. Crook, 1997: Horizontal convective rolls: Determining the environmental conditions supporting their existence and characteristics. Mon. Wea. Rev., 125 , 505526.

    • Search Google Scholar
    • Export Citation
  • Weckwerth, T. M., and Coauthors, 2004: An overview of the International H2O Project (IHOP_2002) and some preliminary highlights. Bull. Amer. Meteor. Soc., 85 , 253277.

    • Search Google Scholar
    • Export Citation
  • Weckwerth, T. M., C. R. Pettet, F. Fabry, S. Park, M. A. LeMone, and J. W. Wilson, 2005: Radar refractivity retrieval: Validation and application to short-term forecasting. J. Appl. Meteor., 44 , 285300.

    • Search Google Scholar
    • Export Citation
  • Weiss, C. C., and H. B. Bluestein, 2002: Airborne pseudo–dual Doppler analysis of a dryline–outflow boundary intersection. Mon. Wea. Rev., 130 , 12071226.

    • Search Google Scholar
    • Export Citation
  • Weiss, C. C., H. B. Bluestein, and A. L. Pazmany, 2006: Finescale radar observations of the 22 May 2002 dryline during the International H2O Project (IHOP). Mon. Wea. Rev., 134 , 273293.

    • Search Google Scholar
    • Export Citation
  • Wilson, J. W., T. M. Weckwerth, J. Vivekanandan, R. M. Wakimoto, and R. W. Russell, 1994: Boundary layer clear-air echoes: Origin of echoes and accuracy of derived winds. J. Atmos. Oceanic Technol., 11 , 11841206.

    • Search Google Scholar
    • Export Citation
  • Wurman, J., J. Straka, E. Rasmussen, M. Randall, and A. Zahrai, 1997: Design and deployment of a portable, pencil-beam, pulsed, 3-cm Doppler radar. J. Atmos. Oceanic Technol., 14 , 15021512.

    • Search Google Scholar
    • Export Citation
  • Wurman, J., 2001: The DOW mobile multiple Doppler network. Preprints, 30th Int. Conf. on Radar Meteorology, Munich, Germany, Amer. Meteor. Soc., 95–97.

  • Ziegler, C. L., and C. E. Hane, 1993: An observational study of the dryline. Mon. Wea. Rev., 121 , 14891506.

  • Ziegler, C. L., and E. N. Rasmussen, 1998: The initiation of moist convection at the dryline: Forecasting issues from a case study perspective. Wea. Forecasting, 13 , 11061131.

    • Search Google Scholar
    • Export Citation
  • Ziegler, C. L., W. J. Martin, R. A. Pielke, and R. L. Walko, 1995: A modeling study of the dryline. J. Atmos. Sci., 52 , 263285.

  • Ziegler, C. L., T. J. Lee, and R. A. Pielke Sr., 1997: Convective initiation at the dryline: A modeling study. Mon. Wea. Rev., 125 , 10011026.

    • Search Google Scholar
    • Export Citation
  • Ziegler, C. L., E. N. Rasumssen, T. R. Shepherd, A. I. Watson, and J. M. Straka, 2001: The evolution of low-level rotation in the 29 May 1994 Newcastle-Graham, Texas, storm complex during VORTEX. Mon. Wea. Rev., 129 , 13391368.

    • Search Google Scholar
    • Export Citation
  • Ziegler, C. L., D. Kennedy, and E. N. Rasmussen, 2004: A wireless network for collection and synthesis of mobile mesoscale weather observations. J. Atmos. Oceanic Technol., 21 , 16591669.

    • Search Google Scholar
    • Export Citation
  • Ziegler, C. L., M. S. Buban, and E. N. Rasmussen, 2007: A Lagrangian objective analysis technique for assimilating in situ observations with multiple radar-derived airflow. Mon. Wea. Rev., 135 , 24172442.

    • Search Google Scholar
    • Export Citation
  • Zrnic, D. S., and A. V. Ryzhkov, 1998: Observations of insects and birds with a polarimetric radar. IEEE Trans. Geosci. Remote Sens., 36 , 661668.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 319 84 5
PDF Downloads 162 60 7