The Motion of Simulated Convective Storms as a Function of Basic Environmental Parameters

J. Cody Kirkpatrick University of Alabama in Huntsville, Huntsville, Alabama

Search for other papers by J. Cody Kirkpatrick in
Current site
Google Scholar
PubMed
Close
,
Eugene W. McCaul Jr. Universities Space Research Association, Huntsville, Alabama

Search for other papers by Eugene W. McCaul Jr. in
Current site
Google Scholar
PubMed
Close
, and
Charles Cohen Universities Space Research Association, Huntsville, Alabama

Search for other papers by Charles Cohen in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Based on results from a three-dimensional cloud-resolving model, it is shown that simulated convective storm motions are affected by thermodynamic as well as kinematic properties of the environment. In addition to the mean wind and its vertical shear, the effect on isolated storm motion of parameters such as bulk convective available potential energy (CAPE), the vertical distribution of buoyancy in the profile, the heights of the lifting condensation level (LCL) and level of free convection (LFC), and cloud-base temperature is considered. Storm motions show at least some sensitivity to all input parameters. Consistent with previous studies, hodograph radius has the most pronounced effect, but the vertical distribution of shear (which also influences the mean wind) affects storm evolution and propagation, even when the effective hodograph radius is unchanged. Among the thermodynamic parameters, the most significant variations occur when the LCL–LFC configuration is modified or when cloud-base temperature is changed. The effects of increases in bulk CAPE act mainly to increase the temporal variability of storm motions. This temporal variability is found to consist both of oscillations about a mean state and trends (accelerations) and is related to increases in the complexity of storm evolution with increasing CAPE. The results point to the importance of environmental factors that enhance storm intensity and rotation, which play a key role in determining storm deviate motion.

Corresponding author address: Eugene W. McCaul Jr., Universities Space Research Association, 320 Sparkman Dr., Huntsville, AL 35805. Email: emccaul@usra.edu

Abstract

Based on results from a three-dimensional cloud-resolving model, it is shown that simulated convective storm motions are affected by thermodynamic as well as kinematic properties of the environment. In addition to the mean wind and its vertical shear, the effect on isolated storm motion of parameters such as bulk convective available potential energy (CAPE), the vertical distribution of buoyancy in the profile, the heights of the lifting condensation level (LCL) and level of free convection (LFC), and cloud-base temperature is considered. Storm motions show at least some sensitivity to all input parameters. Consistent with previous studies, hodograph radius has the most pronounced effect, but the vertical distribution of shear (which also influences the mean wind) affects storm evolution and propagation, even when the effective hodograph radius is unchanged. Among the thermodynamic parameters, the most significant variations occur when the LCL–LFC configuration is modified or when cloud-base temperature is changed. The effects of increases in bulk CAPE act mainly to increase the temporal variability of storm motions. This temporal variability is found to consist both of oscillations about a mean state and trends (accelerations) and is related to increases in the complexity of storm evolution with increasing CAPE. The results point to the importance of environmental factors that enhance storm intensity and rotation, which play a key role in determining storm deviate motion.

Corresponding author address: Eugene W. McCaul Jr., Universities Space Research Association, 320 Sparkman Dr., Huntsville, AL 35805. Email: emccaul@usra.edu

Save
  • Adlerman, E. J., and K. K. Droegemeier, 2005: The dependence of numerically simulated cyclic mesocyclogenesis upon environmental vertical wind shear. Mon. Wea. Rev., 133 , 35953623.

    • Search Google Scholar
    • Export Citation
  • Adlerman, E. J., K. K. Droegemeier, and R. P. Davies-Jones, 1999: Numerical simulation of cyclic mesocyclogenesis. J. Atmos. Sci., 56 , 20452069.

    • Search Google Scholar
    • Export Citation
  • Akaeda, K., J. Reisner, and D. Parsons, 1995: The role of mesoscale and topographically induced circulations in initiating a flash flood observed during the TAMEX project. Mon. Wea. Rev., 123 , 17201739.

    • Search Google Scholar
    • Export Citation
  • Bolton, D., 1980: The computation of equivalent potential temperature. Mon. Wea. Rev., 108 , 10461053.

  • Brooks, H. B., 1946: A summary of some radar thunderstorm observations. Bull. Amer. Meteor. Soc., 27 , 557563.

  • Brooks, H. E., and R. B. Wilhelmson, 1993: Helicity and updraft intensity in numerically modeled supercells. J. Atmos. Sci., 50 , 18241833.

    • Search Google Scholar
    • Export Citation
  • Brooks, H. E., C. A. Doswell III, and J. Cooper, 1994: On the environments of tornadic and nontornadic mesocyclones. Wea. Forecasting, 9 , 606618.

    • Search Google Scholar
    • Export Citation
  • Browning, K. A., 1962: Cellular structure of convective storms. Meteor. Mag., 91 , 341350.

  • Browning, K. A., 1964: Airflow and precipitation trajectories within severe local storms which travel to the right of the winds. J. Atmos. Sci., 21 , 634639.

    • Search Google Scholar
    • Export Citation
  • Bunkers, M. J., and J. W. Zeitler, 2000: On the nature of highly deviant supercell motion. Preprints, 20th Conf. on Severe Local Storms, Orlando, FL, Amer. Meteor. Soc., 236–239.

  • Bunkers, M. J., B. A. Klimowski, J. W. Zeitler, R. L. Thompson, and M. L. Weisman, 2000: Predicting supercell motion using a new hodograph technique. Wea. Forecasting, 15 , 6179.

    • Search Google Scholar
    • Export Citation
  • Bunkers, M. J., J. S. Johnson, L. J. Czepyha, J. M. Grzywacz, B. A. Klimowski, and M. R. Hjelmfelt, 2006: An observational examination of long-lived supercells. Part II: Environmental conditions and forecasting. Wea. Forecasting, 21 , 689714.

    • Search Google Scholar
    • Export Citation
  • Byers, H. R., and R. R. Braham, 1949: The Thunderstorm. U.S. Government Printing Office, 287 pp.

  • Cohen, C., and E. W. McCaul Jr., 2006: The sensitivity of simulated convective storms to variations in prescribed single-moment microphysics parameters that describe particle distributions, sizes, and numbers. Mon. Wea. Rev., 134 , 25472565.

    • Search Google Scholar
    • Export Citation
  • Colquhoun, J. R., 1980: A method of estimating the velocity of a severe thunderstorm using the vertical wind profile in the storm’s environment. Preprints, Eighth Conf. on Weather Forecasting and Analysis, Denver, CO, Amer. Meteor. Soc., 316–323.

  • Corfidi, S. F., 2003: Cold pools and MCS propagation: Forecasting the motion of downwind-developing MCSs. Wea. Forecasting, 18 , 9971017.

    • Search Google Scholar
    • Export Citation
  • Cotton, W. R., and R. A. Anthes, 1989: Storm and Cloud Dynamics. Academic Press, 883 pp.

  • Davies, J., and R. Johns, 1993: Some wind and instability parameters associated with strong and violent tornadoes. 1. Wind shear and helicity. The Tornado: Its Structure, Dynamics, Prediction, and Hazards, Geophys. Monogr., Vol. 79, Amer. Geophys. Union, 573–582.

    • Search Google Scholar
    • Export Citation
  • Davies-Jones, R. P., 1984: Streamwise vorticity: The origin of updraft rotation in supercell storms. J. Atmos. Sci., 41 , 29913006.

  • Davies-Jones, R. P., 2002: Linear and nonlinear propagation of supercell storms. J. Atmos. Sci., 59 , 31783205.

  • Doswell III, C. A., 1982: The operational meteorology of convective weather. Vol. I: Operational mesoanalysis. U.S. Dept. of Commerce/NOAA Tech. Memo. NWS NSSFC-5, 158 pp.

  • Droegemeier, K. K., S. M. Lazarus, and R. Davies-Jones, 1993: The influence of helicity on numerically simulated convective storms. Mon. Wea. Rev., 121 , 20052029.

    • Search Google Scholar
    • Export Citation
  • Foote, G. B., 1985: Aspects of cumulonimbus classification relevant to the hail problem. J. Rech. Atmos., 19 , 6174.

  • Gilmore, M., and L. J. Wicker, 1998: The influence of mid-tropospheric dryness on supercell morphology and evolution. Mon. Wea. Rev., 126 , 943958.

    • Search Google Scholar
    • Export Citation
  • Klemp, J. B., and R. B. Wilhelmson, 1978: The simulation of three-dimensional convective storm dynamics. J. Atmos. Sci., 35 , 10701096.

    • Search Google Scholar
    • Export Citation
  • Landel, G., J. A. Smith, M. L. Baeck, M. Steiner, and F. L. Ogden, 1999: Radar studies of heavy convective rainfall in mountainous terrain. J. Geophys. Res., 104 , 3145131466.

    • Search Google Scholar
    • Export Citation
  • Lemon, L. R., 1976: The flanking line, a severe thunderstorm intensification source. J. Atmos. Sci., 33 , 686694.

  • Lilly, D. K., 1962: On the numerical simulation of buoyant convection. Tellus, 14 , 148172.

  • Lilly, D. K., 1982: The development and maintenance of rotation in convective storms. Intense Atmospheric Vortices, L. Bengtsson and J. Lighthill, Eds., Springer-Verlag, 149–160.

    • Search Google Scholar
    • Export Citation
  • Maddox, R. A., 1976: An evaluation of tornado proximity wind and stability data. Mon. Wea. Rev., 104 , 133142.

  • Markowski, P. M., E. N. Rasmussen, and J. M. Straka, 1998: The occurrence of tornadoes in supercells interacting with boundaries during VORTEX-95. Wea. Forecasting, 13 , 852859.

    • Search Google Scholar
    • Export Citation
  • Marroquin, A., and D. J. Raymond, 1982: A linearized convective overturning model for the prediction of thunderstorm movement. J. Atmos. Sci., 39 , 146151.

    • Search Google Scholar
    • Export Citation
  • Marwitz, J. D., 1972a: The structure and motion of severe hailstorms. Part I: Supercell storms. J. Appl. Meteor., 11 , 166179.

  • Marwitz, J. D., 1972b: The structure and motion of severe hailstorms. Part II: Multicell storms. J. Appl. Meteor., 11 , 180188.

  • McCaul Jr., E. W., 1991: Buoyancy and shear characteristics of hurricane-tornado environments. Mon. Wea. Rev., 119 , 19541978.

  • McCaul Jr., E. W., and M. L. Weisman, 2001: The sensitivity of simulated supercell structure and intensity to variations in the shapes of environmental buoyancy and shear profiles. Mon. Wea. Rev., 129 , 664687.

    • Search Google Scholar
    • Export Citation
  • McCaul Jr., E. W., and C. Cohen, 2002: The impact on simulated storm structure and intensity of variations in the mixed layer and moist layer depths. Mon. Wea. Rev., 130 , 17221748.

    • Search Google Scholar
    • Export Citation
  • McCaul Jr, E. W., and C. Cohen, 2004: The initiation, longevity and morphology of simulated convective storms as a function of free-tropopheric relative humidity. Preprints, 22d Conf. on Severe Local Storms, Hyannis, MA, Amer. Meteor. Soc., CD-ROM, 8A.5.

  • McCaul Jr., E. W., C. Cohen, and C. Kirkpatrick, 2005: The sensitivity of simulated storm structure, intensity, and precipitation efficiency to environmental temperature. Mon. Wea. Rev., 133 , 30153037.

    • Search Google Scholar
    • Export Citation
  • Nair, U. S., E. W. McCaul Jr., and R. M. Welch, 2002: Climatology of environmental parameters that influence severe storm intensity and morphology. Preprints, 16th Conf. on Hydrology, Orlando, FL, Amer. Meteor. Soc., CD-ROM, 2.4.

  • Newton, C. W., and H. R. Newton, 1959: Dynamical interactions between large convective clouds and environment with vertical shear. J. Meteor., 16 , 483496.

    • Search Google Scholar
    • Export Citation
  • Orville, H. D., and J-M. Chen, 1982: Effects of cloud seeding, latent heat of fusion, and condensate loading on cloud dynamics and precipitation evolution: A numerical study. J. Atmos. Sci., 39 , 28072827.

    • Search Google Scholar
    • Export Citation
  • Pielke, R. A., and Coauthors, 1992: A comprehensive meteorological modeling system—RAMS. Meteor. Atmos. Phys., 9 , 6991.

  • Ramsay, H. A., and C. A. Doswell III, 2005: A sensitivity study of hodograph-based methods for estimating supercell motion. Wea. Forecasting, 20 , 954970.

    • Search Google Scholar
    • Export Citation
  • Rasmussen, E. N., and D. O. Blanchard, 1998: A baseline climatology of sounding-derived supercell and tornado forecasting parameters. Wea. Forecasting, 13 , 11481164.

    • Search Google Scholar
    • Export Citation
  • Rotunno, R., and J. B. Klemp, 1982: The influence of the shear-induced pressure gradient on thunderstorm motion. Mon. Wea. Rev., 110 , 136151.

    • Search Google Scholar
    • Export Citation
  • Rotunno, R., and J. B. Klemp, 1985: On the rotation and propagation of simulated supercell thunderstorms. J. Atmos. Sci., 42 , 271292.

    • Search Google Scholar
    • Export Citation
  • Schaefer, J. T., 1986: The dryline. Mesoscale Meteorology and Forecasting, P. S. Ray, Ed., Amer. Meteor. Soc., 549–572.

  • Shapiro, A., P. Robinson, J. Wurman, and J. Gao, 2003: Single-Doppler velocity retrieval with rapid-scan radar data. J. Atmos. Oceanic Technol., 20 , 17581775.

    • Search Google Scholar
    • Export Citation
  • Smagorinsky, J., 1963: General circulation experiments with the primitive equations. Part I: The basic experiment. Mon. Wea. Rev., 91 , 99164.

    • Search Google Scholar
    • Export Citation
  • Tripoli, G. J., and W. R. Cotton, 1982: The Colorado State University three-dimensional cloud/mesoscale model–1982. Part I: General theoretical framework and sensitivity experiments. J. Rech. Atmos., 16 , 185219.

    • Search Google Scholar
    • Export Citation
  • van den Heever, S., and W. R. Cotton, 2004: The impact of hail size on simulated supercell storms. J. Atmos. Sci., 61 , 15961609.

  • Walko, R. L., W. R. Cotton, M. P. Meyers, and J. Y. Harrington, 1995: New RAMS cloud microphysics parameterization. Part I: The single-moment scheme. Atmos. Res., 38 , 2962.

    • Search Google Scholar
    • Export Citation
  • Weaver, J. F., and S. P. Nelson, 1982: Multiscale aspects of thunderstorm gust fronts and their effects on subsequent storm development. Mon. Wea. Rev., 110 , 707718.

    • Search Google Scholar
    • Export Citation
  • Weckwerth, T. M., and D. B. Parsons, 2006: A review of convection initiation and motivation for IHOP_2002. Mon. Wea. Rev., 134 , 522.

  • Weisman, M. L., and J. B. Klemp, 1982: The dependence of numerically simulated convective storms on vertical wind shear and buoyancy. Mon. Wea. Rev., 110 , 504520.

    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., and J. B. Klemp, 1984: The structure and classification of numerically simulated convective storms in directionally varying shears. Mon. Wea. Rev., 112 , 24792498.

    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., and R. Rotunno, 2000: The use of vertical wind shear versus helicity in interpreting supercell dynamics. J. Atmos. Sci., 57 , 14521472.

    • Search Google Scholar
    • Export Citation
  • Wilhelmson, R. B., and J. B. Klemp, 1978: A numerical study of storm splitting that leads to long-lived storms. J. Atmos. Sci., 35 , 19741986.

    • Search Google Scholar
    • Export Citation
  • Wilson, J. W., and R. D. Roberts, 2006: Summary of convective storm initiation and evolution during IHOP: Observational and modeling perspective. Mon. Wea. Rev., 134 , 2347.

    • Search Google Scholar
    • Export Citation
  • Zeitler, J. W., and M. J. Bunkers, 2005: Operational forecasting of supercell motion: Review and case studies using multiple datasets. Natl. Wea. Dig., 29 , 8197.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 276 79 9
PDF Downloads 236 69 6