Abstract
The ensemble transform (ET) scheme changes forecast perturbations into analysis perturbations whose amplitudes and directions are consistent with a user-provided estimate of analysis error covariance. A practical demonstration of the ET scheme was undertaken using Naval Research Laboratory (NRL) Atmospheric Variational Data Assimilation System (NAVDAS) analysis error variance estimates and the Navy Operational Global Atmospheric Prediction System (NOGAPS) numerical weather prediction (NWP) model. It was found that the ET scheme produced forecast ensembles that were comparable to or better in a variety of measures than those produced by the Fleet Numerical and Oceanography Center (FNMOC) bred-growing modes (BGM) scheme. Also, the demonstration showed that the introduction of stochastic perturbations into the ET forecast ensembles led to a substantial improvement in the agreement between the ET and NAVDAS analysis error variances. This finding is strong evidence that even a small-sized ET ensemble is capable of obtaining good agreement between the ET and NAVDAS analysis error variances, provided that NWP model deficiencies are accounted for. Last, since the NAVDAS analysis error covariance estimate is diagonal and hence ignores multivariate correlations, it was of interest to examine the ET analysis perturbations’ spatial correlation. Tests showed that the ET analysis perturbations exhibited statistically significant, realistic multivariate correlations.
Corresponding author address: Justin G. McLay, Naval Research Laboratory, 7 Grace Hopper Ave., Stop 2, Monterey, CA 93943-5502. Email: mclay@nrlmry.navy.mil