Climatology of Strong Intermountain Cold Fronts

Jason C. Shafer Lyndon State College, Lyndonville, Vermont

Search for other papers by Jason C. Shafer in
Current site
Google Scholar
PubMed
Close
and
W. James Steenburgh Department of Meteorology, University of Utah, Salt Lake City, Utah

Search for other papers by W. James Steenburgh in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Motivated by the intensity and severity of winds and temperature falls that frequently accompany rapidly developing cold fronts in northern Utah, this paper presents a 25-yr climatology of strong cold frontal passages over the Intermountain West and adjoining western United States. Using conventional surface observations and the North American Regional Reanalysis, strong cold frontal passages are identified based on a temperature fall of 7°C or greater in a 2–3-h period, a concurrent pressure rise of 3 hPa or greater, and the presence of a large-scale 700-hPa temperature gradient of at least 6°C (500 km)−1. The number of strong cold frontal passages exhibits a strong continental signature with very few events (<10) along the Pacific coast and more than 200 events east of the Continental Divide. The number of events increases dramatically from the Cascade Mountains and Sierra Nevada to northern Utah, indicating that the Intermountain West is a frequent cold front breeding ground.

A composite of the 25 strongest events at Salt Lake City (based on the magnitude of the temperature fall) reveals that confluent deformation acting on a broad baroclinic zone over central Nevada commonly initiates Intermountain frontogenesis. The confluent deformation develops in southwesterly large-scale flow and appears to be enhanced by flow deflection around the Sierra Nevada. Quasi-stationary development and intensification of the southwest–northeast-oriented cold front then occurs as a mobile upper-level trough approaches from the west. The front becomes mobile as cold advection and ascent associated with the upper-level trough overtake the low-level front. Cloud and precipitation observations suggest that differential diabatic heating contributes to the rapid frontal intensification in many events.

Corresponding author address: Dr. Jason C. Shafer, Department of Meteorology, Lyndon State College, 1001 College Rd., Lyndonville, VT 05851. Email: jason.shafer@lyndonstate.edu

Abstract

Motivated by the intensity and severity of winds and temperature falls that frequently accompany rapidly developing cold fronts in northern Utah, this paper presents a 25-yr climatology of strong cold frontal passages over the Intermountain West and adjoining western United States. Using conventional surface observations and the North American Regional Reanalysis, strong cold frontal passages are identified based on a temperature fall of 7°C or greater in a 2–3-h period, a concurrent pressure rise of 3 hPa or greater, and the presence of a large-scale 700-hPa temperature gradient of at least 6°C (500 km)−1. The number of strong cold frontal passages exhibits a strong continental signature with very few events (<10) along the Pacific coast and more than 200 events east of the Continental Divide. The number of events increases dramatically from the Cascade Mountains and Sierra Nevada to northern Utah, indicating that the Intermountain West is a frequent cold front breeding ground.

A composite of the 25 strongest events at Salt Lake City (based on the magnitude of the temperature fall) reveals that confluent deformation acting on a broad baroclinic zone over central Nevada commonly initiates Intermountain frontogenesis. The confluent deformation develops in southwesterly large-scale flow and appears to be enhanced by flow deflection around the Sierra Nevada. Quasi-stationary development and intensification of the southwest–northeast-oriented cold front then occurs as a mobile upper-level trough approaches from the west. The front becomes mobile as cold advection and ascent associated with the upper-level trough overtake the low-level front. Cloud and precipitation observations suggest that differential diabatic heating contributes to the rapid frontal intensification in many events.

Corresponding author address: Dr. Jason C. Shafer, Department of Meteorology, Lyndon State College, 1001 College Rd., Lyndonville, VT 05851. Email: jason.shafer@lyndonstate.edu

Save
  • Astling, E. G., 1984: On the relationship between diurnal mesoscale circulations and precipitation in a mountain valley. J. Climate Appl. Meteor., 23 , 16351644.

    • Search Google Scholar
    • Export Citation
  • Bannon, P. R., and M. Mak, 1984: Diabatic quasi-geostrophic surface frontogenesis. J. Atmos. Sci., 41 , 21892201.

  • Bluestein, H. B., 1993: Synoptic-Dynamic Meteorology in Midlatitudes. Vol. 2. Oxford University Press, 594 pp.

  • Bosart, L. F., C. J. Vaudo, and J. H. Helsdon Jr., 1972: Coastal frontogenesis. J. Appl. Meteor., 11 , 12361258.

  • Bosart, L. F., A. C. Wasula, W. Drag, and K. Meier, 2008: Strong surface fronts over sloping terrain and coastal plains. Sanders Symposium Monograph, Meteor. Monogr., No. 55, Amer. Meteor. Soc., in press.

    • Search Google Scholar
    • Export Citation
  • Bowen, I. S., 1926: The ratio of heat losses by conduction and evaporation from any water surface. Phys. Rev., 27 , 779787.

  • Braun, S. A., R. A. Houze Jr., and B. F. Smull, 1997: Airborne dual-Doppler observations of an intense frontal system approaching the Pacific Northwest coast. Mon. Wea. Rev., 125 , 31313156.

    • Search Google Scholar
    • Export Citation
  • Browning, K. A., and C. W. Pardoe, 1973: Structure of low-level jet streams ahead of mid-latitude cold fronts. Quart. J. Roy. Meteor. Soc., 99 , 619638.

    • Search Google Scholar
    • Export Citation
  • Carbone, R. E., 1982: A severe frontal rainband. Part I: Stormwide hydrodynamic structure. J. Atmos. Sci., 39 , 258279.

  • Chien, F., C. F. Mass, and P. J. Neiman, 2001: An observational and numerical study of an intense landfalling cold front along the northwest coast of the United States during COAST IOP 2. Mon. Wea. Rev., 129 , 934955.

    • Search Google Scholar
    • Export Citation
  • Colle, B. A., and C. F. Mass, 1995: The structure and evolution of cold surges east of the Rocky Mountains. Mon. Wea. Rev., 123 , 25772610.

    • Search Google Scholar
    • Export Citation
  • Colle, B. A., C. F. Mass, and B. F. Smull, 1999: An observational and numerical study of a cold front interacting with the Olympic Mountains during COAST IOP5. Mon. Wea. Rev., 127 , 13101334.

    • Search Google Scholar
    • Export Citation
  • Darby, L. S., W. D. Neff, and R. M. Banta, 1999: Multiscale analysis of a meso-β frontal passage in the complex terrain of the Colorado Front Range. Mon. Wea. Rev., 127 , 20622082.

    • Search Google Scholar
    • Export Citation
  • Elliott, R. D., 1958: California storm characteristics and weather modification. J. Meteor., 15 , 486493.

  • Fujita, T., 1959: Precipitation and cold air production in mesoscale thunderstorm systems. J. Meteor., 16 , 454466.

  • Gallus Jr., W. A., and M. Segal, 1999: Diabatic effects on late-winter cold front evolution: Conceptual and numerical model evaluations. Mon. Wea. Rev., 127 , 15181537.

    • Search Google Scholar
    • Export Citation
  • Garratt, J. R., 1988: Summertime cold fronts in southeast Australia—Behavior and low-level structure of main frontal types. Mon. Wea. Rev., 116 , 636649.

    • Search Google Scholar
    • Export Citation
  • Gilmore, M. S., and L. J. Wicker, 1998: The influence of midtropospheric dryness on supercell morphology and evolution. Mon. Wea. Rev., 126 , 943958.

    • Search Google Scholar
    • Export Citation
  • Hakim, G. J., 1992: The eastern United States side-door cold front of 22 April 1987: A case study of an intense atmospheric density current. Mon. Wea. Rev., 120 , 27382762.

    • Search Google Scholar
    • Export Citation
  • Hobbs, P. V., and P. O. G. Persson, 1982: The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. Part V: The substructure of narrow cold-frontal rainbands. J. Atmos. Sci., 39 , 280295.

    • Search Google Scholar
    • Export Citation
  • Hobbs, P. V., T. J. Matejka, P. H. Herzegh, J. D. Locatelli, and R. A. Houze Jr., 1980: The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. Part I: A case study of a cold front. J. Atmos. Sci., 37 , 568596.

    • Search Google Scholar
    • Export Citation
  • Hobbs, P. V., J. D. Locatelli, and J. E. Martin, 1996: A new conceptual model for cyclones generated in the lee of the Rockies. Bull. Amer. Meteor. Soc., 77 , 11691178.

    • Search Google Scholar
    • Export Citation
  • Horel, J. D., and C. V. Gibson, 1994: Analysis and simulation of a winter storm over Utah. Wea. Forecasting, 9 , 479494.

  • Huang, H., and K. Emanuel, 1991: The effects of evaporation on frontal circulations. J. Atmos. Sci., 48 , 619628.

  • Katzfey, J. J., and B. F. Ryan, 1997: Modification of the thermodynamic structure of the lower troposphere by the evaporation of precipitation: A GEWEX cloud system study. Mon. Wea. Rev., 125 , 14311446.

    • Search Google Scholar
    • Export Citation
  • Koch, S. E., J. T. McQueen, and V. M. Karyampudi, 1995: A numerical study of the effects of differential cloud cover on cold frontal structure and dynamics. J. Atmos. Sci., 52 , 937964.

    • Search Google Scholar
    • Export Citation
  • Koch, S. E., A. Aksakal, and J. T. McQueen, 1997: The influence of mesoscale humidity and evapotranspiration fields on a model forecast of a cold-frontal squall line. Mon. Wea. Rev., 125 , 384409.

    • Search Google Scholar
    • Export Citation
  • Koppel, L. L., L. F. Bosart, and D. Keyser, 2000: A 25-yr climatology of large-amplitude hourly surface pressure changes over the conterminous United States. Mon. Wea. Rev., 128 , 5168.

    • Search Google Scholar
    • Export Citation
  • Lagouvardos, K., Y. Lemaitre, and G. Scialom, 1993: Importance of diabatic processes on ageostrophic circulations observed during the FRONTS 87 experiment. Quart. J. Roy. Meteor. Soc., 119 , 13211345.

    • Search Google Scholar
    • Export Citation
  • Lee, T. P., 1995: Intermountain cyclogenesis: A climatology and multiscale case studies. Ph.D. dissertation, Department of Atmospheric Science, State University of New York at Albany, 399 pp.

  • Lewis, J. M., 1995: The story behind the Bowen ratio. Bull. Amer. Meteor. Soc., 76 , 24332443.

  • Long, A. B., A. W. Huggin, and B. A. Campistron, 1990: Investigations of a winter mountain storm in Utah. Part I: Synoptic analyses, mesoscale kinematics, and water release rates. J. Atmos. Sci., 47 , 13021322.

    • Search Google Scholar
    • Export Citation
  • Marwitz, J., and J. Toth, 1993: The front range blizzard of 1990. Part I: Synoptic and mesoscale structure. Mon. Wea. Rev., 121 , 402415.

    • Search Google Scholar
    • Export Citation
  • Mass, C. F., W. J. Steenburgh, and D. M. Schultz, 1991: Diurnal surface-pressure variations over the continental United States and the influence of sea level reduction. Mon. Wea. Rev., 119 , 28142830.

    • Search Google Scholar
    • Export Citation
  • Mesinger, F., and Coauthors, 2006: North American Regional Reanalysis. Bull. Amer. Meteor. Soc., 87 , 343360.

  • Miller, J. E., 1948: On the concept of frontogenesis. J. Meteor., 5 , 169171.

  • Moore, J. T., and K. F. Smith, 1989: Diagnosis of anafronts and katafronts. Wea. Forecasting, 4 , 6172.

  • Moore, J. T., and G. E. Vanknowe, 1992: The effect of jet-streak curvature on kinematic fields. Mon. Wea. Rev., 120 , 24292441.

  • NCDC, 1995: Storm data. NOAA/NCDC Rep. 6, Vol. 37, 396 pp.

  • NCDC, 2002: Storm data. NOAA/NCDC Rep. 4, Vol. 44, 276 pp.

  • Neiman, P. J., and R. M. Wakimoto, 1999: The interaction of a Pacific cold front with shallow air masses east of the Rocky Mountains. Mon. Wea. Rev., 127 , 21022127.

    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., F. M. Ralph, M. A. Shapiro, B. F. Smull, and D. Johnson, 1998: An observational study of fronts and frontal mergers over the continental United States. Mon. Wea. Rev., 126 , 25212554.

    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., F. M. Ralph, R. L. Weber, T. Uttal, L. B. Nance, and D. H. Levinson, 2001: Observations of nonclassical frontal propagation and frontally forced gravity waves adjacent to steep topography. Mon. Wea. Rev., 129 , 26332659.

    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., F. M. Ralph, A. B. White, D. A. Kingsmill, and P. O. G. Persson, 2002: The statistical relationship between upslope flow and rainfall in California’s coastal mountains: Observations during CALJET. Mon. Wea. Rev., 130 , 14681492.

    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., F. M. Ralph, P. O. G. Persson, A. B. White, D. P. Jorgensen, and D. E. Kingmsill, 2004: Modification of fronts and precipitation by coastal blocking during an intense landfalling winter storm in Southern California: Observations during CALJET. Mon. Wea. Rev., 132 , 242273.

    • Search Google Scholar
    • Export Citation
  • Oliver, V. J., and G. C. Holzworth, 1953: Some effects of the evaporation of widespread precipitation on the production of fronts and on changes in frontal slopes and motions. Mon. Wea. Rev., 81 , 141151.

    • Search Google Scholar
    • Export Citation
  • Petterssen, S., 1936: Contribution to the theory of frontogenesis. Geofys. Publ., 11 , 127.

  • Petterssen, S., 1956: Weather Analysis and Forecasting. Vol. 1, Motion and Motion Systems, 2nd ed., McGraw-Hill, 428 pp.

  • Physick, W. L., 1988: Mesoscale modeling of a cold front and its interaction with a diurnally heated land mass. J. Atmos. Sci., 45 , 31693187.

    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., P. J. Neiman, D. E. Kingsmill, P. O. G. Persson, A. B. White, E. T. Strem, E. D. Andrews, and R. C. Antweiler, 2003: The impact of a prominent rain shadow on flooding in California’s Santa Cruz Mountains: A CALJET case study and sensitivity to the ENSO cycle. J. Hydrometeor., 4 , 12431264.

    • Search Google Scholar
    • Export Citation
  • Reeder, M. J., 1986: The interaction of a surface cold front with a prefrontal thermodynamically well-mixed boundary layer. Aust. Meteor. Mag., 34 , 137148.

    • Search Google Scholar
    • Export Citation
  • Reeder, M. J., and K. J. Tory, 2005: The effect of the continental boundary layer on the dynamics of fronts in a two-dimensional model of baroclinic instability. Part II: Surface heating and cooling. Quart. J. Roy. Meteor. Soc., 131 , 24092429.

    • Search Google Scholar
    • Export Citation
  • Reynolds, D. W., and A. P. Kuciauskas, 1988: Remote and in situ observations of Sierra Nevada winter mountain clouds: Relationships between mesoscale structure, precipitation, and liquid water. J. Appl. Meteor., 27 , 140156.

    • Search Google Scholar
    • Export Citation
  • Sanders, F., 1955: An investigation of the structure and dynamics of an intense surface frontal zone. J. Atmos. Sci., 12 , 542552.

  • Sanders, F., 1999: A proposed method of surface map analysis. Mon. Wea. Rev., 127 , 945955.

  • Sanders, F., and C. A. Doswell III, 1995: A case for detailed surface analysis. Bull. Amer. Meteor. Soc., 76 , 505521.

  • Schultz, D. M., 2004: Cold fronts with and without prefrontal wind shifts in the central United States. Mon. Wea. Rev., 132 , 20402053.

    • Search Google Scholar
    • Export Citation
  • Schultz, D. M., and R. J. Trapp, 2003: Nonclassical cold-frontal structure caused by dry subcloud air in northern Utah during the Intermountain Precipitation Experiment (IPEX). Mon. Wea. Rev., 131 , 22222246.

    • Search Google Scholar
    • Export Citation
  • Schultz, D. M., W. E. Bracken, L. F. Bosart, G. J. Hakim, M. A. Bedrick, M. J. Dickinson, and K. R. Tyle, 1997: The 1993 superstorm cold surge: Frontal structure, gap flow, and tropical impact. Mon. Wea. Rev., 125 , 539.

    • Search Google Scholar
    • Export Citation
  • Schultz, D. M., W. E. Bracken, and L. F. Bosart, 1998: Planetary- and synoptic-scale signature associated with Central American cold surges. Mon. Wea. Rev., 126 , 527.

    • Search Google Scholar
    • Export Citation
  • Segal, M., E. A. Aligo, and W. A. Gallus Jr., 2004: A conceptual and scaling evaluation of the surface wetness effect on daytime moisture convergence along a surface cold front with differential cloud cover. J. Hydrometeor., 5 , 365371.

    • Search Google Scholar
    • Export Citation
  • Seitter, K. L., and H. S. Muench, 1985: Observation of a cold front with rope cloud. Mon. Wea. Rev., 113 , 840848.

  • Shafer, J. C., 2005: Topographic and diabatic influences on baroclinic storm evolution over the Intermountain West. Ph.D. dissertation, University of Utah, 140 pp. [Available from Department of Meteorology, University of Utah, 135 South 1460 East, Rm. 819, Salt Lake City, UT 84112-0110.].

  • Shafer, J. C., W. J. Steenburgh, J. A. W. Cox, and J. P. Monteverdi, 2006: Terrain influences on synoptic storm structure and mesoscale precipitation distribution during IPEX IOP3. Mon. Wea. Rev., 134 , 478497.

    • Search Google Scholar
    • Export Citation
  • Shapiro, M. A., 1983: Mesoscale weather in the United States: Review of regional phenomena. The National STORM Program: Scientific and Technical Bases and Major Objectives, R. A. Authes, Ed., University Corporation for Atmospheric Research, 3.1–3.77.

    • Search Google Scholar
    • Export Citation
  • Shapiro, M. A., 1984: Meteorological tower measurements of a surface cold front. Mon. Wea. Rev., 112 , 16341639.

  • Shapiro, M. A., and P. J. Kennedy, 1981: Research aircraft measurements of jet stream geostrophic and ageostrophic winds. J. Atmos. Sci., 38 , 26422652.

    • Search Google Scholar
    • Export Citation
  • Shapiro, M. A., T. Hampel, D. Rotzoli, and F. Mosher, 1985: The frontal hydraulic head: A micro-alpha (∼1 km) triggering mechanism for mesoconvective weather systems. Mon. Wea. Rev., 113 , 11661183.

    • Search Google Scholar
    • Export Citation
  • Smith, R. K., M. J. Reeder, N. J. Tapper, and D. R. Christie, 1995: Central Australian cold fronts. Mon. Wea. Rev., 123 , 1638.

  • Sortais, J-L., J-P. Cammas, X. D. Yu, E. Richard, and R. Rosset, 1993: A case study of coupling between low- and upper-level jet–front systems: Investigations of dynamical and diabatic processes. Mon. Wea. Rev., 121 , 22392253.

    • Search Google Scholar
    • Export Citation
  • Steenburgh, W. J., 2003: One hundred inches in one hundred hours: Evolution of a Wasatch Mountain winter storm cycle. Wea. Forecasting, 18 , 10181036.

    • Search Google Scholar
    • Export Citation
  • Steenburgh, W. J., and T. R. Blazek, 2001: Topographic distortion of a cold front over the Snake River Plain and central Idaho Mountains. Wea. Forecasting, 16 , 301314.

    • Search Google Scholar
    • Export Citation
  • Stegner, W., 1992: Where the Bluebird Sings to the Lemonade Springs: Living and Writing in the West. Random House, 227 pp.

  • Tory, K. J., and M. J. Reeder, 2005: The effect of the continental boundary layer on the dynamics of fronts in a two-dimensional model of baroclinic instability. Part I: An insulated lower surface. Quart. J. Roy. Meteor. Soc., 131 , 23892408.

    • Search Google Scholar
    • Export Citation
  • Wakimoto, R. M., and H. Cai, 2002: Airborne observations of a front near a col during FASTEX. Mon. Wea. Rev., 130 , 18981912.

  • Wallace, J. M., and P. V. Hobbs, 1977: Atmospheric Science:. An Introductory Survey. Academic Press, 467 pp.

  • West, G. L., W. J. Steenburgh, and W. Y. Y. Cheng, 2007: Spurious grid-scale precipitation in the North American Regional Reanalysis. Mon. Wea. Rev., 135 , 21682184.

    • Search Google Scholar
    • Export Citation
  • Wiesmueller, J. L., 1982: The effect on diurnal heating on the movement of cold fronts through eastern Colorado. NOAA Tech. Memo. NWS CR-66, 14 pp. [Available from National Technical Information Service, U.S. Department of Commerce, 5285 Port Royal Rd., Springfield, VA 22161.].

  • Williams Jr., P., 1972: Western Region synoptic analysis—Problems and methods. NOAA Tech. Memo. NWSTM WR-71, 71 pp. [Available from NOAA NWS Western Region Headquarters, 125 S. State St., Rm. 1311, Salt Lake City, UT 84138-1102.].

  • Yu, C-K., and B. F. Smull, 2000: Airborne Doppler observations of a landfalling cold front upstream of steep coastal orography. Mon. Wea. Rev., 128 , 15771603.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 627 152 13
PDF Downloads 323 83 4