Seasonal Forecasts of Canadian Winter Precipitation by Postprocessing GCM Integrations

Hai Lin MRD/ASTD, Environment Canada, Dorval, Québec, Canada

Search for other papers by Hai Lin in
Current site
Google Scholar
PubMed
Close
,
Gilbert Brunet MRD/ASTD, Environment Canada, Dorval, Québec, Canada

Search for other papers by Gilbert Brunet in
Current site
Google Scholar
PubMed
Close
, and
Jacques Derome Department of Atmospheric and Oceanic Sciences, McGill University, Montréal, Québec, Canada

Search for other papers by Jacques Derome in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

In the second phase of the Canadian Historical Forecasting Project (HFP2), four global atmospheric general circulation models (GCMs) were used to perform seasonal forecasts over the period of 1969–2003. Little predictive skill was found from the uncalibrated GCM ensemble seasonal predictions for the Canadian winter precipitation. This study is an effort to improve the precipitation forecasts through a postprocessing approach.

Canadian winter precipitation is significantly influenced by two of the most important atmospheric large-scale patterns: the Pacific–North American pattern (PNA) and the North Atlantic Oscillation (NAO). The time variations of these two patterns were found to be significantly correlated with those of the leading singular value decomposition (SVD) modes that relate the ensemble mean forecast 500-mb geopotential height over the Northern Hemisphere and the tropical Pacific SST in the previous month (November). A statistical approach to correct the ensemble forecasts was formulated based on the regression of the model’s leading forced SVD patterns and the observed seasonal mean precipitation. The performance of the corrected forecasts was assessed by comparing its cross-validated skill with that of the original GCM ensemble mean forecasts. The results show that the corrected forecasts predict the Canadian winter precipitation with statistically significant skill over the southern prairies and a large area of Québec–Ontario.

Corresponding author address: Dr. Hai Lin, MRD/ASTD, Environment Canada, 2121 Route Trans-Canadienne, Dorval, QC H9P 1J3, Canada. Email: hai.lin@ec.gc.ca

Abstract

In the second phase of the Canadian Historical Forecasting Project (HFP2), four global atmospheric general circulation models (GCMs) were used to perform seasonal forecasts over the period of 1969–2003. Little predictive skill was found from the uncalibrated GCM ensemble seasonal predictions for the Canadian winter precipitation. This study is an effort to improve the precipitation forecasts through a postprocessing approach.

Canadian winter precipitation is significantly influenced by two of the most important atmospheric large-scale patterns: the Pacific–North American pattern (PNA) and the North Atlantic Oscillation (NAO). The time variations of these two patterns were found to be significantly correlated with those of the leading singular value decomposition (SVD) modes that relate the ensemble mean forecast 500-mb geopotential height over the Northern Hemisphere and the tropical Pacific SST in the previous month (November). A statistical approach to correct the ensemble forecasts was formulated based on the regression of the model’s leading forced SVD patterns and the observed seasonal mean precipitation. The performance of the corrected forecasts was assessed by comparing its cross-validated skill with that of the original GCM ensemble mean forecasts. The results show that the corrected forecasts predict the Canadian winter precipitation with statistically significant skill over the southern prairies and a large area of Québec–Ontario.

Corresponding author address: Dr. Hai Lin, MRD/ASTD, Environment Canada, 2121 Route Trans-Canadienne, Dorval, QC H9P 1J3, Canada. Email: hai.lin@ec.gc.ca

Save
  • Baldwin, M. P., D. B. Stephenson, D. W. J. Thompson, T. J. Dunkerton, A. J. Charlton, and A. O’Neill, 2003: Stratospheric memory and extended-range weather forecasts. Science, 301 , 636640.

    • Search Google Scholar
    • Export Citation
  • Barnston, A. G., and R. E. Livezey, 1987: Classification, seasonality, and persistence of low-frequency atmospheric circulation patterns. Mon. Wea. Rev., 115 , 10831126.

    • Search Google Scholar
    • Export Citation
  • Boer, G. J., N. A. McFarlane, R. Laprise, J. D. Henderson, and J-P. Blanchet, 1984: The Canadian Climate Centre spectral atmospheric general circulation model. Atmos.–Ocean, 22 , 397429.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., C. Smith, and J. M. Wallace, 1992: An intercomparison of methods for finding coupled patterns in climate data. J. Climate, 5 , 541560.

    • Search Google Scholar
    • Export Citation
  • Cohen, J., K. Saito, and D. Entekhabi, 2001: The role of the Siberian high in Northern Hemisphere climate variability. Geophys. Res. Lett., 28 , 299302.

    • Search Google Scholar
    • Export Citation
  • Côté, J., S. Gravel, A. Méthot, A. Patoine, M. Roch, and A. Staniforth, 1998a: The operational CMC-MRB Global Environmental Multiscale (GEM) model. Part I: Design considerations and formulation. Mon. Wea. Rev., 126 , 13731395.

    • Search Google Scholar
    • Export Citation
  • Côté, J., J-G. Desmarais, S. Gravel, A. Méthot, A. Patoine, M. Roch, and A. Staniforth, 1998b: The operational CMC-MRB Global Environmental Multiscale (GEM) model. Part II: Results. Mon. Wea. Rev., 126 , 13971418.

    • Search Google Scholar
    • Export Citation
  • Czaja, A., and C. Frankignoul, 2002: Observed impact of North Atlantic SST anomalies on the North Atlantic Oscillation. J. Climate, 15 , 606623.

    • Search Google Scholar
    • Export Citation
  • Derome, J., and Coauthors, 2001: Seasonal predictions based on two dynamical models. Atmos.–Ocean, 39 , 485501.

  • Derome, J., H. Lin, and G. Brunet, 2005: Seasonal forecasting with a simple general circulation model. J. Climate, 18 , 597609.

  • Dewey, K. F., and R. Heim Jr., 1982: A digital archive of Northern Hemisphere snow cover, November 1966 through December 1980. Bull. Amer. Meteor. Soc., 63 , 11321141.

    • Search Google Scholar
    • Export Citation
  • Feddersen, H. A., A. Navarra, and M. N. Ward, 1999: Reduction of model systematic error by statistical correction for dynamical seasonal prediction. J. Climate, 12 , 19741989.

    • Search Google Scholar
    • Export Citation
  • Horel, J. D., and J. M. Wallace, 1981: Planetary scale atmospheric phenomena associated with the Southern Oscillation. Mon. Wea. Rev., 109 , 813829.

    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., 1995: Decadal trends in the North Atlantic Oscillation: Regional temperature and precipitation. Science, 269 , 676679.

    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., Y. Kushnir, M. Visbeck, and G. Ottersen, 2003: An overview of the North Atlantic Oscillation. The North Atlantic Oscillation: Climatic Significance and Environmental Impact, Geophys. Monogr., Vol. 134, Amer. Geophys. Union, 1–35.

  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77 , 437471.

  • Kang, I-S., J-Y. Lee, and C-K. Park, 2004: Potential predictability of summer mean precipitation in a dynamical seasonal prediction system with systematic error correction. J. Climate, 17 , 834844.

    • Search Google Scholar
    • Export Citation
  • Krishnamurti, T. N., C. M. Kishtawai, Z. Zhang, T. LaRow, D. Bachiochi, and C. E. Williford, 2000: Multimodel ensemble forecasts for weather and seasonal climate. J. Climate, 13 , 41964216.

    • Search Google Scholar
    • Export Citation
  • Li, S., M. P. Hoerling, S. Peng, and K. M. Weickmann, 2006: The annular response to tropical Pacific SST forcing. J. Climate, 19 , 18021819.

    • Search Google Scholar
    • Export Citation
  • Lin, H., J. Derome, and G. Brunet, 2005a: Correction of atmospheric dynamical seasonal forecasts using the leading ocean-forced spatial patterns. Geophys. Res. Lett., 32 .L14804, doi:10.1029/2005GL023060.

    • Search Google Scholar
    • Export Citation
  • Lin, H., J. Derome, and G. Brunet, 2005b: Tropical Pacific link to the two dominant patterns of atmospheric variability. Geophys. Res. Lett., 32 .L03801, doi:10.1029/2004GL021495.

    • Search Google Scholar
    • Export Citation
  • McFarlane, N. A., G. J. Boer, J-P. Blanchet, and M. Lazare, 1992: The Canadian Climate Centre second-generation general circulation model and its equilibrium climate. J. Climate, 5 , 10131044.

    • Search Google Scholar
    • Export Citation
  • Mitchell, T. D., and P. D. Jones, 2005: An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int. J. Climatol., 25 , 693712.

    • Search Google Scholar
    • Export Citation
  • Mo, R., and D. M. Straus, 2002: Statistical-dynamical seasonal prediction based on principal component regression of GCM ensemble integrations. Mon. Wea. Rev., 130 , 21672187.

    • Search Google Scholar
    • Export Citation
  • Muller, W. A., C. Appenseller, and C. Schar, 2005: Probabilistic seasonal prediction of the winter North Atlantic Oscillation and its impact on near surface temperature. Climate Dyn., 24 , 213226.

    • Search Google Scholar
    • Export Citation
  • Palmer, T. N., C. Brankovic, and D. S. Richardson, 2000: A probability and decision-model analysis of PROVOST seasonal multi-model ensemble integrations. Quart. J. Roy. Meteor. Soc., 126 , 20132034.

    • Search Google Scholar
    • Export Citation
  • Richman, M. B., 1986: Rotation of principal components. Int. J. Climatol., 6 , 293335.

  • Ritchie, H., 1991: Application of the semi-Lagrangian method to a multilevel spectral primitive-equation model. Quart. J. Roy. Meteor. Soc., 117 , 91106.

    • Search Google Scholar
    • Export Citation
  • Ritchie, H., and C. Beaudoin, 1994: Approximation and sensitivity experiments with a baraclinic semi-Lagrangian spectral model. Mon. Wea. Rev., 122 , 23912399.

    • Search Google Scholar
    • Export Citation
  • Ropelewski, C. F., and M. S. Halpert, 1986: North American precipitation and temperature patterns associated with the El Niño/Southern Oscillation (ENSO). Mon. Wea. Rev., 114 , 23532362.

    • Search Google Scholar
    • Export Citation
  • Shabbar, A., and A. G. Barnston, 1996: Skill of seasonal climate forecasts in Canada using canonical correlation analysis. Mon. Wea. Rev., 124 , 23702385.

    • Search Google Scholar
    • Export Citation
  • Shabbar, A., B. Bonsal, and M. Khandekar, 1997: Canadian precipitation associated with the Southern Oscillation. J. Climate, 10 , 30163027.

    • Search Google Scholar
    • Export Citation
  • Shukla, J. S., and Coauthors, 2000: Dynamical seasonal prediction. Bull. Amer. Meteor. Soc., 81 , 25932606.

  • Smith, T. M., and R. E. Livezey, 1999: GCM systematic error correction and specification of the seasonal mean Pacific-North America region atmosphere from global SSTs. J. Climate, 12 , 273288.

    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., and D. S. Gutzler, 1981: Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon. Wea. Rev., 109 , 784812.

    • Search Google Scholar
    • Export Citation
  • Xie, P., and P. A. Arkin, 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78 , 25392558.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 202 109 25
PDF Downloads 80 38 6