• Aksoy, A., F. Zhang, and J. W. Nielsen-Gammon, 2006: Ensemble-based simultaneous state and parameter estimation in a two-dimensional sea-breeze model. Mon. Wea. Rev., 134 , 29512970.

    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., 2001: An ensemble adjustment Kalman filter for data assimilation. Mon. Wea. Rev., 129 , 28842903.

  • Bishop, C. H., B. J. Etherton, and S. J. Majumdar, 2001: Adaptive sampling with the ensemble transform Kalman filter. Part I: Theoretical aspects. Mon. Wea. Rev., 129 , 420436.

    • Search Google Scholar
    • Export Citation
  • Braham Jr., R. R., 1990: Snow particle size spectra in lake effect snows. J. Appl. Meteor., 29 , 200207.

  • Brandes, E. A., K. Ikeda, G. Zhang, M. Schönhuber, and R. M. Rasmussen, 2007: A statistical and physical description of hydrometeor distributions in Colorado snowstorms using a video disdrometer. J. Appl. Meteor. Climatol., 46 , 634650.

    • Search Google Scholar
    • Export Citation
  • Burgers, G., P. J. van Leeuwen, and G. Evensen, 1998: Analysis scheme in the ensemble Kalman filter. Mon. Wea. Rev., 126 , 17191724.

  • Caya, A., J. Sun, and C. Snyder, 2005: A comparison between the 4DVAR and the ensemble Kalman filter techniques for radar data assimilation. Mon. Wea. Rev., 133 , 30813094.

    • Search Google Scholar
    • Export Citation
  • Chavent, G., 1974: Identification of functional parameter in partial differential equations. Identification of Parameters in Distributed Systems: A Symposium of the American Automatic Control Council, R. E. Goodson and M. Polis, Eds., American Society of Mechanical Engineers, 31–48.

    • Search Google Scholar
    • Export Citation
  • Chavent, G., 1979: Identification of distributed parameter systems: About the output least square method, its implementation, and identifiability. Identification and System Parameter Estimation: Proceedings of the Fifth IFAC Symposium, Vol. 1, R. Iserman, Ed., Pergamon Press, 85–97.

    • Search Google Scholar
    • Export Citation
  • Cifelli, R., C. R. Williams, D. K. Rajopadhyaya, S. K. Avery, K. S. Gage, and P. T. May, 2000: Drop-size distribution characteristics in tropical mesoscale convective systems. J. Appl. Meteor., 39 , 760777.

    • Search Google Scholar
    • Export Citation
  • Cohard, J-M., and J-P. Pinty, 2000: A comprehensive two-moment warm microphysical bulk scheme. I: Description and tests. Quart. J. Roy. Meteor. Soc., 126 , 18151842.

    • Search Google Scholar
    • Export Citation
  • Courtier, P., and O. Talagrand, 1987: Variational assimilation of meteorological observations with the adjoint equation. Part II: Numerical results. Quart. J. Roy. Meteor. Soc., 113 , 13291347.

    • Search Google Scholar
    • Export Citation
  • Crook, N. A., 1996: Sensitivity of moist convection forced by boundary layer processes to low-level thermodynamic fields. Mon. Wea. Rev., 124 , 17671785.

    • Search Google Scholar
    • Export Citation
  • Dowell, D. C., F. Zhang, L. J. Wicker, C. Snyder, and N. A. Crook, 2004: Wind and temperature retrievals in the 17 May 1981 Arcadia, Oklahoma, supercell: Ensemble Kalman filter experiments. Mon. Wea. Rev., 132 , 19822005.

    • Search Google Scholar
    • Export Citation
  • El-Magd, A., V. Chandrasekar, V. N. Bringi, and W. Strapp, 2000: Multiparameter radar and in situ aircraft observation of graupel and hail. IEEE Trans. Geosci. Remote Sens., 38 , 570578.

    • Search Google Scholar
    • Export Citation
  • Evensen, G., 1994: Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res., 99 , C5. 1014310162.

    • Search Google Scholar
    • Export Citation
  • Evensen, G., 2003: The ensemble Kalman filter: Theoretical formulation and practical implementation. Ocean Dyn., 53 , 343367.

  • Evensen, G., and P. J. van Leeuwen, 1996: Assimilation of Geosat altimeter data for the Agulhas Current using the ensemble Kalman filter with a quasigeostrophic model. Mon. Wea. Rev., 124 , 8596.

    • Search Google Scholar
    • Export Citation
  • Ferrier, B. S., 1994: A double-moment multiple-phase four-class bulk ice scheme. Part I: Description. J. Atmos. Sci., 51 , 249280.

  • Ferrier, B. S., W-K. Tao, and J. Simpson, 1995: A double-moment multiple-phase four-class bulk ice scheme. Part II: Simulations of convective storms in different large-scale environments and comparisons with other bulk parameterizations. J. Atmos. Sci., 52 , 10011033.

    • Search Google Scholar
    • Export Citation
  • Gaspari, G., and S. E. Cohn, 1999: Construction of correlation functions in two and three dimensions. Quart. J. Roy. Meteor. Soc., 125 , 723757.

    • Search Google Scholar
    • Export Citation
  • Gilmore, M. S., J. M. Straka, and E. N. Rasmussen, 2004: Precipitation uncertainty due to variations in precipitation particle parameters within a simple microphysics scheme. Mon. Wea. Rev., 132 , 26102627.

    • Search Google Scholar
    • Export Citation
  • Gunn, K. L. S., and J. S. Marshall, 1958: The distribution with size of aggregate snowflakes. J. Meteor., 15 , 452461.

  • Houtekamer, P. L., and H. L. Mitchell, 1998: Data assimilation using an ensemble Kalman filter technique. Mon. Wea. Rev., 126 , 796811.

    • Search Google Scholar
    • Export Citation
  • Houze Jr., R. A., P. V. Hobbs, P. H. Herzegh, and D. B. Parsons, 1979: Size distributions of precipitation particles in frontal clouds. J. Atmos. Sci., 36 , 156162.

    • Search Google Scholar
    • Export Citation
  • Houze Jr., R. A., C-P. Cheng, C. A. Leary, and J. F. Gamache, 1980: Diagnosis of cloud mass and heat fluxes from radar and synoptic data. J. Atmos. Sci., 37 , 754773.

    • Search Google Scholar
    • Export Citation
  • Joss, J., and A. Waldvogel, 1969: Raindrop size distribution and sampling size errors. J. Atmos. Sci., 26 , 566569.

  • Kitamura, S., and S. Nakagiri, 1977: Identifiability of spatially-varying and constant parameters in distributed systems of parabolic type. SIAM J. Control Optim., 15 , 785802.

    • Search Google Scholar
    • Export Citation
  • Le Dimet, F. X., and O. Talagrand, 1986: Variational algorithms for analysis and assimilation of meteorological observations: Theoretical aspects. Tellus, 38A , 97110.

    • Search Google Scholar
    • Export Citation
  • Lin, Y-L., R. D. Farley, and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor., 22 , 10651092.

    • Search Google Scholar
    • Export Citation
  • Lo, K. K., and R. E. Passarelli Jr., 1982: The growth of snow in winter storms: An airborne observational study. J. Atmos. Sci., 39 , 697706.

    • Search Google Scholar
    • Export Citation
  • Lord, S. J., and Coauthors, 2001: Observing system simulation experiments for NPOESS. Preprints, Fifth Symp. on Integrated Observing Systems, Albuquerque, NM, Amer. Meteor. Soc., 168–173.

  • McCumber, M., W-K. Tao, J. Simpson, R. Penc, and S-T. Soong, 1991: Comparison of ice-phase microphysical parameterization schemes using numerical simulations of tropical convection. J. Appl. Meteor., 30 , 9851004.

    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., and R. A. Black, 2004: Observations of particle size and phase in tropical cyclones: Implications for mesoscale modeling of microphysical processes. J. Atmos. Sci., 61 , 422439.

    • Search Google Scholar
    • Export Citation
  • Meyers, M. P., R. L. Walko, J. Y. Harrington, and W. R. Cotton, 1997: New RAMS cloud microphysics parameterization. Part II: The two-moment scheme. Atmos. Res., 45 , 339.

    • Search Google Scholar
    • Export Citation
  • Milbrandt, J. A., and M. K. Yau, 2005: A multimoment bulk microphysics parameterization. Part II: A proposed three-moment closure and scheme description. J. Atmos. Sci., 62 , 30653081.

    • Search Google Scholar
    • Export Citation
  • Mitchell, D. L., 1988: Evolution of snow-size spectra in cyclonic storms. Part I: Snow growth by vapor deposition and aggregation. J. Atmos. Sci., 45 , 34313451.

    • Search Google Scholar
    • Export Citation
  • Murakami, M., 1990: Numerical modeling of dynamical and microphysical evolution of an isolated convective cloud—The 19 July 1981 CCOPE cloud. J. Meteor. Soc. Japan, 68 , 107127.

    • Search Google Scholar
    • Export Citation
  • Navon, I. M., 1998: Practical and theoretical aspects of adjoint parameter estimation and identifiability in meteorology and oceanography. Dyn. Atmos. Oceans, 27 , 5579.

    • Search Google Scholar
    • Export Citation
  • Passarelli, R. E. J., 1978: Theoretical and observational study of snow-size spectra and snowflake aggregation efficiencies. J. Atmos. Sci., 35 , 882889.

    • Search Google Scholar
    • Export Citation
  • Pruppacher, H. R., and J. D. Klett, 1978: Microphysics of Clouds and Precipitation. Reidel, 714 pp.

  • Rutledge, S. A., and P. V. Hobbs, 1983: The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. VIII: A model for the “seeder-feeder” process in warm-frontal rainbands. J. Atmos. Sci., 40 , 11851206.

    • Search Google Scholar
    • Export Citation
  • Rutledge, S. A., and P. V. Hobbs, 1984: The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. XII: A diagnostic modeling study of precipitation development in narrow cold-frontal rainbands. J. Atmos. Sci., 41 , 29492972.

    • Search Google Scholar
    • Export Citation
  • Smith Jr., P. L., C. G. Myers, and H. D. Orville, 1975: Radar reflectivity factor calculations in numerical cloud models using bulk parameterization of precipitation. J. Appl. Meteor., 14 , 11561165.

    • Search Google Scholar
    • Export Citation
  • Snyder, C., and F. Zhang, 2003: Assimilation of simulated Doppler radar observations with an ensemble Kalman filter. Mon. Wea. Rev., 131 , 16631677.

    • Search Google Scholar
    • Export Citation
  • Straka, J. M., and E. R. Mansell, 2005: A bulk microphysics parameterization with multiple ice precipitation categories. J. Appl. Meteor., 44 , 445466.

    • Search Google Scholar
    • Export Citation
  • Sun, N-Z., and W-G. Yeh, 1990: Coupled inverse problems in groundwater modeling 2. Identifiability and experimental design. Water Resour. Res., 26 , 25272540.

    • Search Google Scholar
    • Export Citation
  • Tippett, M. K., J. L. Anderson, C. H. Bishop, T. M. Hamill, and J. S. Whitaker, 2003: Ensemble square root filters. Mon. Wea. Rev., 131 , 14851490.

    • Search Google Scholar
    • Export Citation
  • Tokay, A., and D. A. Short, 1996: Evidence from tropical raindrop spectra of the origin of rain from stratiform versus convective clouds. J. Appl. Meteor., 35 , 355371.

    • Search Google Scholar
    • Export Citation
  • Tokay, A., D. A. Short, and O. W. Thiele, 1995: Convective vs. stratiform rain over Kapingamarangi atoll during TOGA COARE: Evidence from raindrop spectra. Preprints, Conf. on Cloud Physics, Dallas, TX, Amer. Meteor. Soc., 252–257.

  • Tong, M., 2006: Ensemble Kalman filter assimilation of Doppler radar data for the initialization and prediction of convective storms. Ph.D. dissertation, University of Oklahoma, 243 pp.

  • Tong, M., and M. Xue, 2005: Ensemble Kalman filter assimilation of Doppler radar data with a compressible nonhydrostatic model: OSS experiments. Mon. Wea. Rev., 133 , 17891807.

    • Search Google Scholar
    • Export Citation
  • Tong, M., and M. Xue, 2008: Simultaneous estimation of microphysical parameters and atmospheric state with simulated radar data and ensemble square root Kalman filter. Part II: Parameter estimation experiments. Mon. Wea. Rev., 136 , 16491668.

    • Search Google Scholar
    • Export Citation
  • van den Heever, S. C., and W. R. Cotton, 2004: The impact of hail size on simulated supercell storms. J. Atmos. Sci., 61 , 15961609.

  • Waldvogel, A., 1974: The N0 jump of raindrop spectra. J. Atmos. Sci., 31 , 10671078.

  • Whitaker, J. S., and T. M. Hamill, 2002: Ensemble data assimilation without perturbed observations. Mon. Wea. Rev., 130 , 19131924.

  • Xue, M., K. K. Droegemeier, and V. Wong, 2000: The Advanced Regional Prediction System (ARPS)—A multiscale nonhydrostatic atmospheric simulation and prediction tool. Part I: Model dynamics and verification. Meteor. Atmos. Phys., 75 , 161193.

    • Search Google Scholar
    • Export Citation
  • Xue, M., and Coauthors, 2001: The Advanced Regional Prediction System (ARPS)—A multiscale nonhydrostatic atmospheric simulation and prediction tool. Part II: Model physics and applications. Meteor. Atmos. Phys., 76 , 143166.

    • Search Google Scholar
    • Export Citation
  • Xue, M., D-H. Wang, J-D. Gao, K. Brewster, and K. K. Droegemeier, 2003: The Advanced Regional Prediction System (ARPS), storm-scale numerical weather prediction and data assimilation. Meteor. Atmos. Phys., 82 , 139170.

    • Search Google Scholar
    • Export Citation
  • Xue, M., M. Tong, and K. K. Droegemeier, 2006: An OSSE framework based on the ensemble square root Kalman filter for evaluating the impact of data from radar networks on thunderstorm analysis and forecasting. J. Atmos. Oceanic Technol., 23 , 4666.

    • Search Google Scholar
    • Export Citation
  • Yakowitz, S., and L. Duckstein, 1980: Instability in aquifer identification: Theory and case studies. Water Resour. Res., 16 , 10451064.

    • Search Google Scholar
    • Export Citation
  • Yeh, W-G., 1986: Review of parameter identification procedures in groundwater hydrology: The inverse problem. Water Resour. Res., 22 , 95108.

    • Search Google Scholar
    • Export Citation
  • Zhang, F., C. Snyder, and J. Sun, 2004: Impacts of initial estimate and observation availability on convective-scale data assimilation with an ensemble Kalman filter. Mon. Wea. Rev., 132 , 12381253.

    • Search Google Scholar
    • Export Citation
  • Ziegler, C. L., 1985: Retrieval of thermal and microphysical variables in observed convective storms. Part I: Model development and preliminary testing. J. Atmos. Sci., 42 , 14871509.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 247 134 24
PDF Downloads 166 106 11

Simultaneous Estimation of Microphysical Parameters and Atmospheric State with Simulated Radar Data and Ensemble Square Root Kalman Filter. Part I: Sensitivity Analysis and Parameter Identifiability

View More View Less
  • 1 Center for Analysis and Prediction of Storms, and School of Meteorology, University of Oklahoma, Norman, Oklahoma
Restricted access

Abstract

The possibility of estimating fundamental parameters common in single-moment ice microphysics schemes using radar observations is investigated for a model-simulated supercell storm by examining parameter sensitivity and identifiability. These parameters include the intercept parameters for rain, snow, and hail/graupel, and the bulk densities of snow and hail/graupel. These parameters are closely involved in the definition of drop/particle size distributions of microphysical species but often assume highly uncertain specified values.

The sensitivity of model forecast within data assimilation cycles to the parameter values, and the issue of solution uniqueness of the estimation problem, are examined. The ensemble square root filter (EnSRF) is employed for model state estimation. Sensitivity experiments show that the errors in the microphysical parameters have a larger impact on model microphysical fields than on wind fields; radar reflectivity observations are therefore preferred over those of radial velocity for microphysical parameter estimation. The model response time to errors in individual parameters are also investigated. The results suggest that radar data should be used at about 5-min intervals for parameter estimation. The response functions calculated from ensemble mean forecasts for all five individual parameters show concave shapes, with unique minima occurring at or very close to the true values; therefore, true values of these parameters can be retrieved at least in those cases where only one parameter contains error.

The identifiability of multiple parameters together is evaluated from their correlations with forecast reflectivity. Significant levels of correlation are found that can be interpreted physically. As the number of uncertain parameters increases, both the level and the area coverage of significant correlations decrease, implying increased difficulties with multiple-parameter estimation. The details of the estimation procedure and the results of a complete set of estimation experiments are presented in Part II of this paper.

Corresponding author address: Ming Xue, Center for Analysis and Prediction of Storms, National Weather Center, Suite 2500, 120 David L. Boren Blvd., Norman, OK 73072. Email: mxue@ou.edu

Abstract

The possibility of estimating fundamental parameters common in single-moment ice microphysics schemes using radar observations is investigated for a model-simulated supercell storm by examining parameter sensitivity and identifiability. These parameters include the intercept parameters for rain, snow, and hail/graupel, and the bulk densities of snow and hail/graupel. These parameters are closely involved in the definition of drop/particle size distributions of microphysical species but often assume highly uncertain specified values.

The sensitivity of model forecast within data assimilation cycles to the parameter values, and the issue of solution uniqueness of the estimation problem, are examined. The ensemble square root filter (EnSRF) is employed for model state estimation. Sensitivity experiments show that the errors in the microphysical parameters have a larger impact on model microphysical fields than on wind fields; radar reflectivity observations are therefore preferred over those of radial velocity for microphysical parameter estimation. The model response time to errors in individual parameters are also investigated. The results suggest that radar data should be used at about 5-min intervals for parameter estimation. The response functions calculated from ensemble mean forecasts for all five individual parameters show concave shapes, with unique minima occurring at or very close to the true values; therefore, true values of these parameters can be retrieved at least in those cases where only one parameter contains error.

The identifiability of multiple parameters together is evaluated from their correlations with forecast reflectivity. Significant levels of correlation are found that can be interpreted physically. As the number of uncertain parameters increases, both the level and the area coverage of significant correlations decrease, implying increased difficulties with multiple-parameter estimation. The details of the estimation procedure and the results of a complete set of estimation experiments are presented in Part II of this paper.

Corresponding author address: Ming Xue, Center for Analysis and Prediction of Storms, National Weather Center, Suite 2500, 120 David L. Boren Blvd., Norman, OK 73072. Email: mxue@ou.edu

Save