Simultaneous Estimation of Microphysical Parameters and Atmospheric State with Simulated Radar Data and Ensemble Square Root Kalman Filter. Part II: Parameter Estimation Experiments

Mingjing Tong Center for Analysis and Prediction of Storms, and School of Meteorology, University of Oklahoma, Norman, Oklahoma

Search for other papers by Mingjing Tong in
Current site
Google Scholar
PubMed
Close
and
Ming Xue Center for Analysis and Prediction of Storms, and School of Meteorology, University of Oklahoma, Norman, Oklahoma

Search for other papers by Ming Xue in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The ensemble Kalman filter method is applied to correct errors in five fundamental microphysical parameters that are closely involved in the definition of drop/particle size distributions of microphysical species in a commonly used single-moment ice microphysics scheme, for a model-simulated supercell storm, using radar data. The five parameters include the intercept parameters for rain, snow, and hail/graupel and the bulk densities of hail/graupel and snow. The ensemble square root Kalman filter (EnSRF) is employed for simultaneous state and parameter estimation.

The five microphysical parameters are estimated individually or in different combinations starting from different initial guesses. A data selection procedure based on correlation information is introduced, which combined with variance inflation, effectively avoids the collapse of the spread of parameter ensemble, hence filter divergence. Parameter estimation results demonstrate, for the first time, that the ensemble-based method can be used to correct model errors in microphysical parameters through simultaneous state and parameter estimation, using radar reflectivity observations. When error exists in only one of the microphysical parameters, the parameter can be successfully estimated without exception. The estimation of multiple parameters is less reliable, mainly because the identifiability of the parameters becomes weaker and the problem might have no unique solution. The parameter estimation results are found to be very sensitive to the realization of the initial parameter ensemble, which is mainly related to the use of relatively small ensemble sizes. Increasing ensemble size generally improves the parameter estimation. The quality of parameter estimation also depends on the quality of observation data. It is also found that the results of state estimation are generally improved when simultaneous parameter estimation is performed, even when the estimated parameter values are not very accurate.

Corresponding author address: Ming Xue, Center for Analysis and Prediction of Storms, National Weather Center, Suite 2500, 120 David L. Boren Blvd., Norman, OK 73072. Email: mxue@ou.edu

Abstract

The ensemble Kalman filter method is applied to correct errors in five fundamental microphysical parameters that are closely involved in the definition of drop/particle size distributions of microphysical species in a commonly used single-moment ice microphysics scheme, for a model-simulated supercell storm, using radar data. The five parameters include the intercept parameters for rain, snow, and hail/graupel and the bulk densities of hail/graupel and snow. The ensemble square root Kalman filter (EnSRF) is employed for simultaneous state and parameter estimation.

The five microphysical parameters are estimated individually or in different combinations starting from different initial guesses. A data selection procedure based on correlation information is introduced, which combined with variance inflation, effectively avoids the collapse of the spread of parameter ensemble, hence filter divergence. Parameter estimation results demonstrate, for the first time, that the ensemble-based method can be used to correct model errors in microphysical parameters through simultaneous state and parameter estimation, using radar reflectivity observations. When error exists in only one of the microphysical parameters, the parameter can be successfully estimated without exception. The estimation of multiple parameters is less reliable, mainly because the identifiability of the parameters becomes weaker and the problem might have no unique solution. The parameter estimation results are found to be very sensitive to the realization of the initial parameter ensemble, which is mainly related to the use of relatively small ensemble sizes. Increasing ensemble size generally improves the parameter estimation. The quality of parameter estimation also depends on the quality of observation data. It is also found that the results of state estimation are generally improved when simultaneous parameter estimation is performed, even when the estimated parameter values are not very accurate.

Corresponding author address: Ming Xue, Center for Analysis and Prediction of Storms, National Weather Center, Suite 2500, 120 David L. Boren Blvd., Norman, OK 73072. Email: mxue@ou.edu

Save
  • Aksoy, A., F. Zhang, and J. W. Nielsen-Gammon, 2006a: Ensemble-based simultaneous state and parameter estimation with MM5. Geophys. Res. Lett., 33 .L12801, doi:10.1029/2006GL026186.

    • Search Google Scholar
    • Export Citation
  • Aksoy, A., F. Zhang, and J. W. Nielsen-Gammon, 2006b: Ensemble-based simultaneous state and parameter estimation in a two-dimensional sea-breeze model. Mon. Wea. Rev., 134 , 2951–2970.

    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., 2001: An ensemble adjustment Kalman filter for data assimilation. Mon. Wea. Rev., 129 , 2884–2903.

  • Annan, J. D., and J. C. Hargreaves, 2004: Efficient parameter estimation for a highly chaotic system. Tellus, 56A , 520–526.

  • Annan, J. D., J. C. Hargreaves, N. R. Edwards, and R. Marsh, 2005a: Parameter estimation in an intermediate complexity earth system model using an ensemble Kalman filter. Ocean Modell., 8 , 135–154.

    • Search Google Scholar
    • Export Citation
  • Annan, J. D., D. J. Lunt, J. C. Hargreaves, and P. J. Valdes, 2005b: Parameter estimation in an atmospheric GCM using the ensemble Kalman filter. Nonlinear Processes Geophys., 12 , 363–371.

    • Search Google Scholar
    • Export Citation
  • Bishop, C. H., B. J. Etherton, and S. J. Majumdar, 2001: Adaptive sampling with the ensemble transform Kalman filter. Part I: Theoretical aspects. Mon. Wea. Rev., 129 , 420–436.

    • Search Google Scholar
    • Export Citation
  • Burgers, G., P. J. van Leeuwen, and G. Evensen, 1998: Analysis scheme in the ensemble Kalman filter. Mon. Wea. Rev., 126 , 1719–1724.

    • Search Google Scholar
    • Export Citation
  • Crook, N. A., D. C. Dowell, J. Sun, and Y. Zhang, 2004: Assimilation of radar observations of a supercell storm using 4DVar: Parameter retrieval experiments. Preprints, 22nd Conf. on Severe Local Storms, Hyannis, MA, Amer. Meteor. Soc., 8A.2. [Available online at http://ams.confex.com/ams/pdfpapers/81959.pdf.].

  • Dee, D. P., 1995: On-line estimation of error covariance parameters for atmospheric data assimilation. Mon. Wea. Rev., 123 , 1128–1145.

    • Search Google Scholar
    • Export Citation
  • Dowell, D. C., F. Zhang, L. J. Wicker, C. Snyder, and N. A. Crook, 2004: Wind and temperature retrievals in the 17 May 1981 Arcadia, Oklahoma, supercell: Ensemble Kalman filter experiments. Mon. Wea. Rev., 132 , 1982–2005.

    • Search Google Scholar
    • Export Citation
  • Evensen, G., 1994: Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res., 99:C5 , 10143–10162.

    • Search Google Scholar
    • Export Citation
  • Evensen, G., 2003: The ensemble Kalman filter: Theoretical formulation and practical implementation. Ocean Dyn., 53 , 343–367.

  • Gilmore, M. S., J. M. Straka, and E. N. Rasmussen, 2004: Precipitation uncertainty due to variations in precipitation particle parameters within a simple microphysics scheme. Mon. Wea. Rev., 132 , 2610–2627.

    • Search Google Scholar
    • Export Citation
  • Hacker, J. P., and C. Snyder, 2005: Ensemble Kalman filter assimilation of fixed screen-height observations in a parameterized PBL. Mon. Wea. Rev., 133 , 3260–3275.

    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., J. S. Whitaker, and C. Snyder, 2001: Distance-dependent filtering of background error covariance estimates in an ensemble Kalman filter. Mon. Wea. Rev., 129 , 2776–2790.

    • Search Google Scholar
    • Export Citation
  • Hansen, J. A., 2002: Accounting for model error in ensemble-based state estimation and forecasting. Mon. Wea. Rev., 130 , 2373–2391.

    • Search Google Scholar
    • Export Citation
  • Hao, Z., and M. Ghil, 1995: Sequential parameter estimation for a coupled ocean-atmosphere model. Proc. Second Int. Symp. on Assimilation of Observations in Meteorology and Oceanography, Tech. Doc. 651, Tokyo, Japan, WMO, 181–186.

  • Houtekamer, P. L., and H. L. Mitchell, 1998: Data assimilation using an ensemble Kalman filter technique. Mon. Wea. Rev., 126 , 796–811.

    • Search Google Scholar
    • Export Citation
  • Houtekamer, P. L., and H. L. Mitchell, 2001: A sequential ensemble Kalman filter for atmospheric data assimilation. Mon. Wea. Rev., 129 , 123–137.

    • Search Google Scholar
    • Export Citation
  • Houtekamer, P. L., H. L. Mitchell, G. Pellerin, M. Buehner, M. Charron, L. Spacek, and B. Hansen, 2005: Atmospheric data assimilation with an ensemble Kalman filter: Results with real observations. Mon. Wea. Rev., 133 , 604–620.

    • Search Google Scholar
    • Export Citation
  • Jung, Y., G. Zhang, and M. Xue, 2008a: Assimilation of simulated polarimetric radar data for a convective storm using ensemble Kalman filter. Part I: Observation operators for reflectivity and polarimetric variables. Mon. Wea. Rev., in press.

    • Search Google Scholar
    • Export Citation
  • Jung, Y., M. Xue, G. Zhang, and J. Straka, 2008b: Assimilation of simulated polarimetric radar data for a convective storm using ensemble Kalman filter. Part II: Impact of polarimetric data on storm analysis. Mon. Wea. Rev., in press.

    • Search Google Scholar
    • Export Citation
  • Kivman, G. A., 2003: Sequential parameter estimation for stochastic systems. Nonlinear Processes Geophys., 10 , 253–259.

  • Lin, Y-L., R. D. Farley, and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor., 22 , 1065–1092.

    • Search Google Scholar
    • Export Citation
  • Ray, P. S., B. C. Johnson, K. W. Johnson, J. S. Bradberry, J. J. Stephens, K. K. Wagner, R. B. Wilhelmson, and J. B. Klemp, 1981: The morphology of several tornadic storms on 20 May 1977. J. Atmos. Sci., 38 , 1643–1663.

    • Search Google Scholar
    • Export Citation
  • Snyder, C., and F. Zhang, 2003: Assimilation of simulated Doppler radar observations with an ensemble Kalman filter. Mon. Wea. Rev., 131 , 1663–1677.

    • Search Google Scholar
    • Export Citation
  • Sun, N., N-Z. Sun, M. Elimelech, and J. N. Ryan, 2001: Sensitivity analysis and parameter identifiability for colloid transport in geochemically heterogeneous porous media. Water Resour. Res., 37 , 209–222.

    • Search Google Scholar
    • Export Citation
  • Tong, M., 2006: Ensemble Kalman filter assimilation of Doppler radar data for the initialization and prediction of convective storms. Ph.D. dissertation, University of Oklahoma, 243 pp.

  • Tong, M., and M. Xue, 2005a: Ensemble Kalman filter assimilation of Doppler radar data with a compressible nonhydrostatic model: OSS experiments. Mon. Wea. Rev., 133 , 1789–1807.

    • Search Google Scholar
    • Export Citation
  • Tong, M., and M. Xue, 2005b: Simultaneous retrieval of microphysical parameters and atmospheric state variables with radar data and ensemble Kalman filter method. Extended Abstracts, 17th Conf. on Numerical Weather Prediction, Washington, DC, Amer. Meteor. Soc., P1.30. [Available online at http://ams.confex.com/ams/pdfpapers/95042.pdf.].

  • Tong, M., and M. Xue, 2008: Simultaneous estimation of microphysical parameters and atmospheric state with simulated radar data and ensemble square root Kalman filter. Part I: Sensitivity analysis and parameter identifiability. Mon. Wea. Rev., 136 , 1630–1648.

    • Search Google Scholar
    • Export Citation
  • Whitaker, J. S., and T. M. Hamill, 2002: Ensemble data assimilation without perturbed observations. Mon. Wea. Rev., 130 , 1913–1924.

    • Search Google Scholar
    • Export Citation
  • Xue, M., K. K. Droegemeier, and V. Wong, 2000: The Advanced Regional Prediction System (ARPS)—A multiscale nonhydrostatic atmospheric simulation and prediction tool. Part I: Model dynamics and verification. Meteor. Atmos. Phys., 75 , 161–193.

    • Search Google Scholar
    • Export Citation
  • Xue, M., and Coauthors, 2001: The Advanced Regional Prediction System (ARPS)—A multiscale nonhydrostatic atmospheric simulation and prediction tool. Part II: Model physics and applications. Meteor. Atmos. Phys., 76 , 143–165.

    • Search Google Scholar
    • Export Citation
  • Xue, M., D-H. Wang, J-D. Gao, K. Brewster, and K. K. Droegemeier, 2003: The Advanced Regional Prediction System (ARPS), storm-scale numerical weather prediction and data assimilation. Meteor. Atmos. Phys., 82 , 139–170.

    • Search Google Scholar
    • Export Citation
  • Xue, M., M. Tong, and K. K. Droegemeier, 2006: An OSSE framework based on the ensemble square root Kalman filter for evaluating impact of data from radar networks on thunderstorm analysis and forecasting. J. Atmos. Oceanic Technol., 23 , 46–66.

    • Search Google Scholar
    • Export Citation
  • Yu, L., and J. J. O’Brien, 1991: Variational estimation of the wind stress drag coefficient and the oceanic eddy viscosity profile. J. Phys. Oceanogr., 21 , 709–719.

    • Search Google Scholar
    • Export Citation
  • Zhang, F., C. Snyder, and J. Sun, 2004: Impacts of initial estimate and observation availability on convective-scale data assimilation with an ensemble Kalman filter. Mon. Wea. Rev., 132 , 1238–1253.

    • Search Google Scholar
    • Export Citation
  • Zou, X., I. M. Navon, and F. X. Le Dimet, 1992: An optimal nudging data assimilation scheme using parameter estimation. Quart. J. Roy. Meteor. Soc., 118 , 1163–1186.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1354 728 96
PDF Downloads 371 83 2