• Alexander, G. D., J. A. Weinman, V. M. Karyampudi, W. S. Olson, and A. C. L. Lee, 1999: The effect of assimilating rain rates derived from satellites and lightning on forecasts of the 1993 superstorm. Mon. Wea. Rev., 127 , 14331457.

    • Search Google Scholar
    • Export Citation
  • Beard, K. V. K., and H. T. Ochs, 1986: Charging mechanisms in clouds and thunderstorms. The Earth’s Electrical Environment, E. P. Krider and R. G. Robble, Eds., National Academy Press, 114–130.

    • Search Google Scholar
    • Export Citation
  • Black, R. A., 1990: Radar reflectivity-ice water content relationships for use above the melting level in hurricanes. J. Appl. Meteor., 29 , 955961.

    • Search Google Scholar
    • Export Citation
  • Black, R. A., and J. Hallett, 1986: Observations of the distribution of ice in hurricanes. J. Atmos. Sci., 43 , 802822.

  • Black, R. A., and J. Hallett, 1999: Electrification of the hurricane. J. Atmos. Sci., 56 , 20042028.

  • Black, R. A., H. B. Bluestein, M. L. Black, and J. Hallett, 1994: Unusually strong vertical motions in a Caribbean hurricane. Mon. Wea. Rev., 122 , 27222739.

    • Search Google Scholar
    • Export Citation
  • Bogner, P. B., G. M. Barnes, and J. L. Franklin, 2000: Conditional instability and shear for six hurricanes over the Atlantic Ocean. Wea. Forecasting, 15 , 192207.

    • Search Google Scholar
    • Export Citation
  • Cecil, D. J., and E. J. Zipser, 1999: Relationships between tropical cyclone intensity and satellite-based indicators of inner core convection: 85-GHz ice-scattering signature and lightning. Mon. Wea. Rev., 127 , 103123.

    • Search Google Scholar
    • Export Citation
  • Cecil, D. J., E. J. Zipser, and S. W. Nesbitt, 2002a: Reflectivity, ice scattering, and lightning characteristics of hurricane eyewalls and rainbands. Part I: Quantitative description. Mon. Wea. Rev., 130 , 771784.

    • Search Google Scholar
    • Export Citation
  • Cecil, D. J., E. J. Zipser, and S. W. Nesbitt, 2002b: Reflectivity, ice scattering, and lightning characteristics of hurricane eyewalls and rainbands. Part II: Intercomparison of observations. Mon. Wea. Rev., 130 , 785801.

    • Search Google Scholar
    • Export Citation
  • Cecil, D. J., S. J. Goodman, D. J. Boccippio, E. J. Zipser, and S. W. Nesbitt, 2005: Three years of TRMM precipitation features. Part I: Radar, radiometric, and lightning characteristics. Mon. Wea. Rev., 133 , 543566.

    • Search Google Scholar
    • Export Citation
  • Chang, D-E., J. A. Weinman, C. A. Morales, and W. S. Olson, 2001: The effect of spaceborne microwave and ground-based continuous lightning measurements on forecasts of the 1998 Groundhog Day Storm. Mon. Wea. Rev., 129 , 18091833.

    • Search Google Scholar
    • Export Citation
  • Corbosiero, K. L., 2003: The relationship between storm motion, vertical wind shear, and convective asymmetries in tropical cyclones. J. Atmos. Sci., 60 , 366376.

    • Search Google Scholar
    • Export Citation
  • Corbosiero, K. L., and J. Molinari, 2002: The effect of vertical wind shear on the distribution of convection in tropical cyclones. Mon. Wea. Rev., 130 , 21102132.

    • Search Google Scholar
    • Export Citation
  • Cramer, J. A., and K. L. Cummins, 1999: Long-range and trans-oceanic lightning detection. Proc. 11th Int. Conf. on Atmospheric Electricity, Guntersville, AL, Amer. Meteor. Soc., 250–253.

    • Search Google Scholar
    • Export Citation
  • Cummins, K. L., M. J. Murphy, E. A. Bardo, W. L. Hiscoz, R. D. Pyle, and A. E. Pifer, 1998: A combined TOA/MDF technology upgrade of the U.S. National Lightning Detection Network. J. Geophys. Res., 103 , 90359044.

    • Search Google Scholar
    • Export Citation
  • Cummins, K. L., R. B. Pyle, and G. Fournier, 1999: An integrated North American lightning detection network. Preprints, 11th Int. Conf. on Atmospheric Electricity, Guntersville, AL, Amer. Meteor. Soc., 218–221.

    • Search Google Scholar
    • Export Citation
  • Demetriades, N. W., and R. L. Holle, 2005: Long-range lightning applications for hurricane intensity. Preprints. First Conf. on Meteorological Applications of Lightning Data, San Diego, CA, Amer. Meteor. Soc., P2.8.

    • Search Google Scholar
    • Export Citation
  • Demetriades, N. W., and R. L. Holle, 2006: Long range lightning nowcasting applications for tropical cyclones. Preprints. Second Conf. on Meteorological Applications of Lightning Data, Atlanta, GA, Amer. Meteor. Soc., P2.15.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1986: An air-sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. J. Atmos. Sci., 43 , 585605.

    • Search Google Scholar
    • Export Citation
  • Fierro, A., L. Leslie, E. Mansell, J. Straka, D. MacGorman, and C. Ziegler, 2007: A high-resolution simulation of microphysics and electrification in an idealized hurricanelike vortex. Meteor. Atmos. Phys., 98 , 1333.

    • Search Google Scholar
    • Export Citation
  • Fiorino, S. T., and E. A. Smith, 2006: Critical assessment of microphysical assumptions within TRMM radiometer rain profile algorithm using satellite, aircraft, and surface datasets from KWAJEX. J. Appl. Meteor. Climatol., 45 , 754786.

    • Search Google Scholar
    • Export Citation
  • Gamache, J. F., R. A. Houze Jr., and F. D. Marks Jr., 1993: Dual-aircraft investigation of the inner core of Hurricane Norbert. J. Atmos. Sci., 50 , 32213243.

    • Search Google Scholar
    • Export Citation
  • Gray, W. M., 1965: Calculations of cumulus vertical draft velocities in hurricanes from aircraft observations. J. Appl. Meteor., 4 , 463474.

    • Search Google Scholar
    • Export Citation
  • Helsdon, J. H., W. A. Wojcik, and R. D. Farley, 2001: An examination of thunderstorm-charging mechanisms using a two-dimensional storm electrification model. J. Geophys. Res., 106 , 11651192.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, G. M., J. B. Halverson, J. Simpson, L. Tian, and T. P. Bui, 2001: ER-2 Doppler radar investigations of the eyewall of Hurricane Bonnie during the Convection and Moisture Experiment-3. J. Appl. Meteor., 40 , 13101330.

    • Search Google Scholar
    • Export Citation
  • Jorgensen, D. P., 1984: Meso-scale and convective scale characteristics of mature hurricanes. Part I: General observations by research aircraft. J. Atmos. Sci., 41 , 12681285.

    • Search Google Scholar
    • Export Citation
  • Jorgensen, D. P., E. J. Zipser, and M. A. LeMone, 1985: Vertical motions in intense hurricanes. J. Atmos. Sci., 42 , 839856.

  • Knabb, R. D., J. R. Rhome, and D. P. Brown, 2005: Hurricane Katrina. National Hurricane Center, 43 pp. [Available online at http://www.nhc.noaa.gov/pdf/TCR-AL122005_Katrina.pdf.].

  • Knabb, R. D., D. P. Brown, and J. R. Rhome, 2006: Hurricane Rita. National Hurricane Center, 33 pp. [Available online at http://www.nhc.noaa.gov/2005atlan.shtml.].

  • Kummerow, C., and Coauthors, 2001: The evolution of the Goddard profiling algorithm (GPROF) for rainfall estimation from passive microwave sensors. J. Appl. Meteor., 40 , 18011820.

    • Search Google Scholar
    • Export Citation
  • Lee, T. F., F. J. Turk, J. Hawkins, and K. Richardson, 2002: Interpretation of TRMM TMI images of tropical cyclones. Earth Interactions, 6 .[Available online at http://EarthInteractions.org.].

    • Search Google Scholar
    • Export Citation
  • Lyons, W. A., and C. S. Keen, 1994: Observations of lightning in convective supercells within tropical storms and hurricanes. Mon. Wea. Rev., 122 , 18971916.

    • Search Google Scholar
    • Export Citation
  • Marks Jr., F. D., 1985: Evolution of the structure of precipitation in Hurricane Allen (1980). Mon. Wea. Rev., 113 , 909930.

  • Marshall, T. C., and W. D. Rust, 1991: Electric field soundings through thunderstorms. J. Geophys. Res., 96 , 2229722306.

  • Marshall, T. C., W. D. Rust, and M. Stolzenburg, 1995: Electrical structure and updraft speeds in thunderstorms over the southern Great Plains. J. Geophys. Res., 100 , 10011016.

    • Search Google Scholar
    • Export Citation
  • Mohr, K. I., J. S. Famiglietti, and E. J. Zipser, 1999: The contribution to tropical rainfall with respect to convective system type, size, and intensity estimated from the 85-GHz ice-scattering signature. J. Appl. Meteor., 38 , 596606.

    • Search Google Scholar
    • Export Citation
  • Molinari, J., P. K. Moore, V. P. Idone, R. W. Henderson, and A. B. Saljoughy, 1994: Cloud-to-ground lightning in Hurricane Andrew. J. Geophys. Res., 99 , 1666516676.

    • Search Google Scholar
    • Export Citation
  • Molinari, J., P. Moore, and V. Idone, 1999: Convective structure of hurricanes as revealed by lightning locations. Mon. Wea. Rev., 127 , 520534.

    • Search Google Scholar
    • Export Citation
  • Nesbitt, S. W., E. J. Zipser, and D. J. Cecil, 2000: A census of precipitation features in the tropics using TRMM: Radar, ice scattering, and lightning observations. J. Climate, 13 , 40874106.

    • Search Google Scholar
    • Export Citation
  • Orville, R. E., and B. Vonnegut, 1974: Lightning detection from satellites. Electrical Processes in Atmospheres, H. Dolezalek and R. Reiter, Eds., Steinkopff Verlag, 750–753.

    • Search Google Scholar
    • Export Citation
  • Orville, R. E., R. W. Henderson, and L. F. Bosart, 1983: An east coast lightning detection network. Bull. Amer. Meteor. Soc., 64 , 10291037.

    • Search Google Scholar
    • Export Citation
  • Orville, R. E., G. R. Huffines, W. R. Burrows, R. L. Holle, and K. L. Cummins, 2002: The North American Lightning Detection Network (NALDN)—First results: 1998–2000. Mon. Wea. Rev., 130 , 20982109.

    • Search Google Scholar
    • Export Citation
  • Papadopoulos, A., T. G. Chronis, and E. N. Anagnostou, 2005: Improving convective precipitation forecasting through assimilation of regional lightning measurements in a mesoscale model. Mon. Wea. Rev., 133 , 19611977.

    • Search Google Scholar
    • Export Citation
  • Persing, J., and M. T. Montgomery, 2003: Hurricane superintensity. J. Atmos. Sci., 60 , 23492371.

  • Pessi, A. T., S. Businger, T. Cherubini, K. L. Cummins, and T. Turner, 2005: Toward the assimilation of lightning data over the Pacific Ocean into a mesoscale NWP model. Preprints. First Conf. on Meteorological Applications of Lightning Data, San Diego, CA, Amer. Meteor. Soc., 6.3.

    • Search Google Scholar
    • Export Citation
  • Samsury, C. E., and R. E. Orville, 1994: Cloud-to-ground lightning in tropical cyclones: A study of hurricanes Hugo (1989) and Jerry (1989). Mon. Wea. Rev., 122 , 18871896.

    • Search Google Scholar
    • Export Citation
  • Saunders, C. P. R., 1995: Thunderstorm electrification. Handbook of Atmospheric Electrodynamics, Vol. 1, V. Volland, Ed., CRC Press, Inc., 61–92.

    • Search Google Scholar
    • Export Citation
  • Saunders, C. P. R., W. D. Keith, and R. P. Mitzeva, 1991: The influence of liquid water on thunderstorm charging. J. Geophys. Res., 96 , 1100711017.

    • Search Google Scholar
    • Export Citation
  • Squires, K., 2006: Analysis of lightning outbreaks in the eyewalls of two category 5 hurricanes. M.S. thesis, Dept. of Meteorology, University of Hawaii at Manoa, 77 pp. [Available online at http://www.soest.hawaii.edu/MET/Faculty/businger/hurrlight/MastersThesis.pdf.].

  • Szoke, E. J., E. J. Zipser, and D. P. Jorgensen, 1986: A radar study of convective cells in mesoscale systems in GATE. Part I: Vertical profile statistics and comparison with hurricanes. J. Atmos. Sci., 43 , 182197.

    • Search Google Scholar
    • Export Citation
  • Takahashi, T., 1978: Riming electrification as a charge generation mechanisms in thunderstorms. J. Atmos. Sci., 35 , 15361548.

  • Toracinta, E. R., D. J. Cecil, E. J. Zipser, and S. W. Nesbitt, 2002: Radar, passive microwave, and lightning characteristics of precipitating systems in the Tropics. Mon. Wea. Rev., 130 , 802824.

    • Search Google Scholar
    • Export Citation
  • Williams, E. R., S. A. Rutledge, S. G. Goetis, N. Renno, E. Rassmussen, and T. Rickenbach, 1992: A radar and electrical study of tropical “hot towers”. J. Atmos. Sci., 49 , 13861395.

    • Search Google Scholar
    • Export Citation
  • Yuter, S. E., and R. A. Houze Jr., 1995: Three-dimensional kinematic and microphysical evolution of Florida cumulonimbus. Part I: Spatial distribution of updrafts, downdrafts, and precipitation. Mon. Wea. Rev., 123 , 19211940.

    • Search Google Scholar
    • Export Citation
  • Zipser, E. J., 1994: Deep cumulonimbus cloud systems in the Tropics with and without lightning. Mon. Wea. Rev., 122 , 18371851.

  • Zipser, E. J., and M. A. LeMone, 1980: Cumulonimbus vertical velocity events in GATE. Part II: Synthesis and model core structure. J. Atmos. Sci., 37 , 24582469.

    • Search Google Scholar
    • Export Citation
  • Zipser, E. J., and K. R. Lutz, 1994: The vertical profile of radar reflectivity of convective cells: A strong indicator of storm intensity and lightning probability? Mon. Wea. Rev., 122 , 17511759.

    • Search Google Scholar
    • Export Citation
  • Zipser, E. J., D. J. Cecil, C. Liu, S. W. Nesbitt, and D. P. Yorty, 2006: Where are the most intense thunderstorms on earth? Bull. Amer. Meteor. Soc., 87 , 10571071.

    • Search Google Scholar
    • Export Citation
  • Ziv, A., and Z. Levin, 1974: Thundercloud electrification: Cloud growth and electrical development. J. Atmos. Sci., 31 , 16521661.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 186 91 6
PDF Downloads 126 59 3

The Morphology of Eyewall Lightning Outbreaks in Two Category 5 Hurricanes

View More View Less
  • 1 University of Hawaii at Manoa, Honolulu, Hawaii
Restricted access

Abstract

Data from the Long-Range Lightning Detection Network (LLDN), the Tropical Rainfall Measuring Mission (TRMM) satellite, and reconnaissance aircraft are used to analyze the morphology of lightning outbreaks in the eyewalls of Hurricanes Rita and Katrina, two of the strongest storms in the Atlantic hurricane record. Each hurricane produced eyewall lightning outbreaks during the period of most rapid intensification, during eyewall replacement cycles, and during the time period that encompassed the maximum intensity for each storm.

Within the effective range of the aircraft radar, maxima in eyewall strike density were collocated with maxima in radar reflectivity. High lightning strike rates were also consistently associated with TRMM low brightness temperatures and large precipitation ice concentration (PIC) values. The strike density ratio between the eyewall region and the outer rainband region was 6:1 for Hurricane Rita and 1:1 for Hurricane Katrina. This result is in contrast to those of previous remote lightning studies, which found that outer rainbands dominated the lightning distribution. The differences are shown to be at least in part the result of the more limited range of the National Lightning Detection Network (NLDN) data used in the earlier studies. Finally, implications of the results for the use of LLDN lightning data to remotely examine changes in hurricane intensity and structural evolution are discussed.

+ Current affiliation: NOAA/National Weather Service, Central Weather Service Unit, Ronkonkoma, New York

Corresponding author address: S. Businger, Department of Meteorology, University of Hawaii at Manoa, 2525 Correa Rd., Honolulu, HI 96822. Email: businger@hawaii.edu

Abstract

Data from the Long-Range Lightning Detection Network (LLDN), the Tropical Rainfall Measuring Mission (TRMM) satellite, and reconnaissance aircraft are used to analyze the morphology of lightning outbreaks in the eyewalls of Hurricanes Rita and Katrina, two of the strongest storms in the Atlantic hurricane record. Each hurricane produced eyewall lightning outbreaks during the period of most rapid intensification, during eyewall replacement cycles, and during the time period that encompassed the maximum intensity for each storm.

Within the effective range of the aircraft radar, maxima in eyewall strike density were collocated with maxima in radar reflectivity. High lightning strike rates were also consistently associated with TRMM low brightness temperatures and large precipitation ice concentration (PIC) values. The strike density ratio between the eyewall region and the outer rainband region was 6:1 for Hurricane Rita and 1:1 for Hurricane Katrina. This result is in contrast to those of previous remote lightning studies, which found that outer rainbands dominated the lightning distribution. The differences are shown to be at least in part the result of the more limited range of the National Lightning Detection Network (NLDN) data used in the earlier studies. Finally, implications of the results for the use of LLDN lightning data to remotely examine changes in hurricane intensity and structural evolution are discussed.

+ Current affiliation: NOAA/National Weather Service, Central Weather Service Unit, Ronkonkoma, New York

Corresponding author address: S. Businger, Department of Meteorology, University of Hawaii at Manoa, 2525 Correa Rd., Honolulu, HI 96822. Email: businger@hawaii.edu

Save