• Andersson, E., M. Fisher, E. Hólm, L. Isaksen, G. Radnóti, and Y. Trémolet, 2005: Will the 4D-Var approach be defeated by nonlinearity? ECMWF Tech. Memo. 479, 26 pp.

  • Auligné, T., A. P. McNally, and D. Dee, 2007: Adaptive bias correction for satellite data in a numerical weather prediction system. Quart. J. Roy. Meteor. Soc., 133 , 631642.

    • Search Google Scholar
    • Export Citation
  • Bauer, P., P. Lopez, A. Benedetti, D. Salmond, and E. Moreau, 2006a: Implementation of 1D+4D-Var assimilation of precipitation-affected microwave radiances at ECMWF. I: 1D-Var. Quart. J. Roy. Meteor. Soc., 132 , 22772306.

    • Search Google Scholar
    • Export Citation
  • Bauer, P., P. Lopez, D. Salmond, A. Benedetti, S. Saarinen, and M. Bonazzola, 2006b: Implementation of 1D+4D-Var assimilation of precipitation-affected microwave radiances at ECMWF. II: 4D-Var. Quart. J. Roy. Meteor. Soc., 132 , 23072332.

    • Search Google Scholar
    • Export Citation
  • Bayler, G. M., R. Aune, and W. H. Raymond, 2000: NWP cloud initialization using GOES sounder data and improved modeling of nonprecipitating clouds. Mon. Wea. Rev., 128 , 39113920.

    • Search Google Scholar
    • Export Citation
  • Benedetti, A., G. L. Stephens, and T. Vukićević, 2003a: Variational assimilation of radar reflectivities in a cirrus model. I: Model description and adjoint sensitivity studies. Quart. J. Roy. Meteor. Soc., 129 , 277300.

    • Search Google Scholar
    • Export Citation
  • Benedetti, A., T. Vukićević, and G. L. Stephens, 2003b: Variational assimilation of radar reflectivities in a cirrus model. II: Optimal initialization and model bias estimation. Quart. J. Roy. Meteor. Soc., 129 , 301319.

    • Search Google Scholar
    • Export Citation
  • Chevallier, F., P. Lopez, A. M. Tompkins, M. Janisková, and E. Moreau, 2004: The capability of 4D-Var systems to assimilate cloud-affected satellite infrared radiances. Quart. J. Roy. Meteor. Soc., 130 , 917932.

    • Search Google Scholar
    • Export Citation
  • Cohn, S. E., 1997: An introduction to estimation theory. J. Meteor. Soc. Japan, 75 , 257288.

  • Courtier, P., J-N. Thépaut, and A. Hollingsworth, 1994: A strategy for operational implementation of 4D-Var, using an incremental approach. Quart. J. Roy. Meteor. Soc., 120 , 13671387.

    • Search Google Scholar
    • Export Citation
  • Dee, D., 2004: Variational bias correction of radiance data in the ECMWF system. Proc. ECMWF Workshop on Assimilation of High Spectral Resolution Sounders in NWP, Reading, United Kingdom, ECMWF, 97–112.

    • Search Google Scholar
    • Export Citation
  • Fillion, L., and J-F. Mahfouf, 2003: Jacobians of an operational prognostic cloud scheme. Mon. Wea. Rev., 131 , 28382856.

  • Fisher, M., 1998: Minimization algorithms for variational data assimilation. Proc. Seminar on Recent Developments in Numerical Methods for Atmospheric Modelling, Reading, United Kingdom, ECMWF, 364–385.

    • Search Google Scholar
    • Export Citation
  • Fisher, M., 2003: Background error covariance modelling. Proc. Seminar on Recent Developments in Data Assimilation for Atmosphere and Ocean, Reading, United Kingdom, ECMWF, 45–64.

    • Search Google Scholar
    • Export Citation
  • Fisher, M., 2004: Generalized frames on the sphere, with application to background error covariance modelling. Proc. Seminar on Recent Developments in Numerical Methods for Atmospheric and Ocean Modelling, Reading, United Kingdom, ECMWF, 87–101.

    • Search Google Scholar
    • Export Citation
  • Fu, Q., 1996: An accurate parameterization of the solar radiative properties of cirrus clouds for climate models. J. Climate, 9 , 20582082.

    • Search Google Scholar
    • Export Citation
  • Gauthier, P., and J-N. Thépaut, 2001: Impact of the digital filter as a weak constraint in the preoperational 4D-Var assimilation system of Météo-France. Mon. Wea. Rev., 129 , 20892102.

    • Search Google Scholar
    • Export Citation
  • Greenwald, T. J., R. Hertenstein, and T. Vukićević, 2002: An all-weather observational operator for radiance data assimilation with mesoscale forecast models. Mon. Wea. Rev., 130 , 18821897.

    • Search Google Scholar
    • Export Citation
  • Greenwald, T. J., T. Vukićević, L. D. Grasso, and T. H. Vonder Haar, 2004: Adjoint sensitivity analysis of an observational operator for visible and infrared cloudy-sky radiance assimilation. Quart. J. Roy. Meteor. Soc., 130 , 685705.

    • Search Google Scholar
    • Export Citation
  • Hólm, E., E. Andersson, A. Beljaars, P. Lopez, J-F. Mahfouf, A. J. Simmons, and J-N. Thépaut, 2002: Assimilation and modelling of the hydrological cycle: ECMWF’s status and plans. ECMWF Tech. Memo. 383, 55 pp.

  • Hou, A. Y., S. Q. Zhang, and O. Reale, 2004: Variational continuous assimilation of TMI and SSM/I rain rates: Impact on GEOS-3 hurricane analyses and forecasts. Mon. Wea. Rev., 132 , 20942109.

    • Search Google Scholar
    • Export Citation
  • Hu, M., M. Xue, and K. Brewster, 2006a: 3D-VAR and cloud analysis with WSR-88D level-II data for the prediction of the Fort Worth, Texas, tornadic thunderstorms. Part I: Cloud analysis and its impact. Mon. Wea. Rev., 134 , 675698.

    • Search Google Scholar
    • Export Citation
  • Hu, M., M. Xue, J. Gao, and K. Brewster, 2006b: 3D-VAR and cloud analysis with WSR-88D level-II data for the prediction of the Fort Worth, Texas, tornadic thunderstorms. Part II: Impact of radial velocity analysis via 3D-VAR. Mon. Wea. Rev., 134 , 699721.

    • Search Google Scholar
    • Export Citation
  • Janisková, M., J-N. Thépaut, and J-F. Geleyn, 1999: Simplified and regular physical parameterizations for incremental four-dimensional variational assimilation. Mon. Wea. Rev., 127 , 2645.

    • Search Google Scholar
    • Export Citation
  • Janisková, M., J-F. Mahfouf, J. J. Morcrette, and F. Chevallier, 2002: Linearized radiation and cloud schemes in the ECMWF model: Development and evaluation. Quart. J. Roy. Meteor. Soc., 128 , 15051527.

    • Search Google Scholar
    • Export Citation
  • King, M. D., and Coauthors, 2003: Cloud and aerosol properties, precipitable water, and profiles of temperature and water vapor from MODIS. IEEE Trans. Geosci. Remote Sens., 41 , 442458.

    • Search Google Scholar
    • Export Citation
  • King, M. D., S. Platnick, P. A. Hubanks, G. T. Arnold, E. G. Moody, G. Wind, and B. Wind, cited. 2006: Collection 005 change summary for the MODIS Cloud Optical Property (06_OD) Algorithm. [Available online at http://modis-atmos.gsfc.nasa.gov/C005_Changes/C005_CloudOpticalProperties_ver311.pdf.].

  • Li, J-L., and Coauthors, 2005: Comparisons of EOS MLS cloud ice measurements with ECMWF analyses and GCM simulations: Initial results. Geophys. Res. Lett., 32 .L18710, doi:10.1029/2005GL023788.

    • Search Google Scholar
    • Export Citation
  • Li, J-L., J. H. Jiang, D. E. Waliser, and A. M. Tompkins, 2007: Assessing consistency between EOS MLS and ECMWF analyzed and forecast estimates of cloud ice. Geophys. Res. Lett., 34 .L08701, doi:10.1029/2006GL029022.

    • Search Google Scholar
    • Export Citation
  • Lipton, A. E., and G. D. Modica, 1999: Assimilation of visible-band satellite data for mesoscale forecasting in cloudy conditions. Mon. Wea. Rev., 127 , 265278.

    • Search Google Scholar
    • Export Citation
  • Livesey, N. J., and Coauthors, 2005: Version 1.5 level 2 data quality and description document. JPL Tech. Doc. D-32381, Pasadena, CA.

  • Lopez, P., and E. Moreau, 2005: A convection scheme for data assimilation: Description and initial tests. Quart. J. Roy. Meteor. Soc., 131 , 409436.

    • Search Google Scholar
    • Export Citation
  • Lopez, P., A. Benedetti, P. Bauer, M. Janisková, and M. Köhler, 2006: Experimental 2D-Var assimilation of ARM cloud and precipitation observations. Quart. J. Roy. Meteor. Soc., 132 , 13251347.

    • Search Google Scholar
    • Export Citation
  • MacPherson, B., B. J. Wright, W. H. Hand, and A. J. Maycock, 1996: The impact of MOPS moisture data in the U.K. Meteorological Office mesoscale data assimilation scheme. Mon. Wea. Rev., 124 , 17461766.

    • Search Google Scholar
    • Export Citation
  • Mahfouf, J-F., 1999: Influence of physical processes on the tangent-linear approximation. Tellus, 51A , 147166.

  • Martin, G. M., W. Johnson, and A. Spice, 1994: The measurement and parameterization of effective radius of droplets in warm stratocumulus. J. Atmos. Sci., 51 , 18231842.

    • Search Google Scholar
    • Export Citation
  • Matricardi, M., 2005: The inclusion of aerosols and clouds in RTIASI, the ECMWF fast radiative transfer model for the infrared atmospheric sounding interferometer. ECMWF Tech. Memo. 474, 53 pp.

  • Moreau, E., P. Lopez, P. Bauer, A. M. Tompkins, M. Janisková, and F. Chevallier, 2004: Variational retrieval of temperature and humidity profiles using rain rates versus microwave brightness temperatures. Quart. J. Roy. Meteor. Soc., 130 , 827852.

    • Search Google Scholar
    • Export Citation
  • Ou, S-C., and K-N. Liou, 1995: Ice microphysics and climate temperature feedback. Atmos. Res., 35 , 127138.

  • Platnick, S., M. D. King, S. A. Ackerman, W. P. Menzel, B. A. Baum, J. C. Riedi, and R. A. Frey, 2003: The MODIS cloud products: Algorithms and examples from Terra. IEEE Trans. Geosci. Remote Sens., 41 , 459473.

    • Search Google Scholar
    • Export Citation
  • Radnóti, G., Y. Trémolet, E. Andersson, L. Isaksen, E. Hólm, and M. Janisková, 2005: Diagnostics of linear and incremental approximations in 4D-Var revisited for higher resolution analysis. ECMWF Tech. Memo. 467, 18 pp.

  • Slingo, A., 1989: A GCM parameterization for the shortwave radiative properties of water clouds. J. Atmos. Sci., 46 , 14191427.

  • Stephens, G. L., and Coauthors, 2002: The CloudSat mission and the A-train. Bull. Amer. Meteor. Soc., 83 , 17711790.

  • Sun, J., and N. A. Crook, 1998: Dynamical and microphysical retrieval from Doppler radar observations using a cloud model and its adjoint. Part II: Retrieval experiments of an observed Florida convective storm. J. Atmos. Sci., 55 , 835852.

    • Search Google Scholar
    • Export Citation
  • Tompkins, A. M., and M. Janisková, 2004: A cloud scheme for data assimilation: Description and initial tests. Quart. J. Roy. Meteor. Soc., 130 , 24952517.

    • Search Google Scholar
    • Export Citation
  • Trémolet, Y., 2005: Incremental 4D-Var convergence study. ECMWF Tech. Memo. 469, 34 pp.

  • Tsuyuki, T., 1997: Variational data assimilation in the tropics using precipitation data. Part III: Assimilation of SSM/I precipitation rates. Mon. Wea. Rev., 125 , 14471464.

    • Search Google Scholar
    • Export Citation
  • Vukićević, T., T. Greenwald, M. Županski, D. Županski, T. Vonder Haar, and A. S. Jones, 2004: Mesoscale cloud state estimation from visible and infrared satellite radiances. Mon. Wea. Rev., 132 , 30663077.

    • Search Google Scholar
    • Export Citation
  • Wielicki, B. A., B. R. Barkstrom, E. F. Harrison, R. B. Lee III, G. L. Smith, and J. E. Cooper, 1996: Clouds and the Earth’s Radiant Energy System (CERES): An earth observing system experiment. Bull. Amer. Meteor. Soc., 77 , 853868.

    • Search Google Scholar
    • Export Citation
  • Wu, B., J. Verlinde, and J. Sun, 2000: Dynamical and microphysical retrievals from Doppler radar observations of a deep convective cloud. J. Atmos. Sci., 57 , 262283.

    • Search Google Scholar
    • Export Citation
  • Županski, D., and F. Mesinger, 1995: Four-dimensional variational assimilation of precipitation data. Mon. Wea. Rev., 123 , 11121127.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 180 75 2
PDF Downloads 42 15 0

Assimilation of MODIS Cloud Optical Depths in the ECMWF Model

View More View Less
  • 1 European Centre for Medium-Range Weather Forecasts, Reading, United Kingdom
Restricted access

Abstract

At the European Centre for Medium-Range Weather Forecasts (ECMWF), a large effort has recently been devoted to define and implement moist physics schemes for variational assimilation of rain- and cloud-affected brightness temperatures. This study expands on the current application of the new linearized moist physics schemes to assimilate cloud optical depths retrieved from the Moderate Resolution Imaging Spectroradiometer (MODIS) on board the Aqua platform for the first time in the ECMWF operational four-dimensional assimilation system. Model optical depths are functions of ice water and liquid water contents through established parameterizations. Linearized cloud schemes in turn link these cloud variables with temperature and humidity. A bias correction is applied to the optical depths to minimize the differences between model and observations. The control variables in the assimilation are temperature, humidity, winds, and surface pressure. One-month assimilation experiments for April 2006 demonstrated an impact of the assimilated MODIS cloud optical depths on the model fields, particularly temperature and humidity. Comparison with independent observations indicates a positive effect of the cloud information assimilated into the model, especially on the amount and distribution of the ice water content. The impact of the cloud assimilation on the medium-range forecast is neutral to slightly positive. Most importantly, this study demonstrates that global assimilation of cloud observations in ECMWF four-dimensional variational assimilation system (4DVAR) is technically doable but a continued research effort is necessary to achieve clear positive impacts with such data.

Corresponding author address: Marta Janisková, European Centre for Medium-Range Weather Forecasts, Shinfield Park, Reading, RG2 9AX, United Kingdom. Email: marta.janiskova@ecmwf.int

Abstract

At the European Centre for Medium-Range Weather Forecasts (ECMWF), a large effort has recently been devoted to define and implement moist physics schemes for variational assimilation of rain- and cloud-affected brightness temperatures. This study expands on the current application of the new linearized moist physics schemes to assimilate cloud optical depths retrieved from the Moderate Resolution Imaging Spectroradiometer (MODIS) on board the Aqua platform for the first time in the ECMWF operational four-dimensional assimilation system. Model optical depths are functions of ice water and liquid water contents through established parameterizations. Linearized cloud schemes in turn link these cloud variables with temperature and humidity. A bias correction is applied to the optical depths to minimize the differences between model and observations. The control variables in the assimilation are temperature, humidity, winds, and surface pressure. One-month assimilation experiments for April 2006 demonstrated an impact of the assimilated MODIS cloud optical depths on the model fields, particularly temperature and humidity. Comparison with independent observations indicates a positive effect of the cloud information assimilated into the model, especially on the amount and distribution of the ice water content. The impact of the cloud assimilation on the medium-range forecast is neutral to slightly positive. Most importantly, this study demonstrates that global assimilation of cloud observations in ECMWF four-dimensional variational assimilation system (4DVAR) is technically doable but a continued research effort is necessary to achieve clear positive impacts with such data.

Corresponding author address: Marta Janisková, European Centre for Medium-Range Weather Forecasts, Shinfield Park, Reading, RG2 9AX, United Kingdom. Email: marta.janiskova@ecmwf.int

Save