• Alapaty, K., , S. Raman, , and D. S. Niyogi, 1997: Uncertainty in the specification of surface characteristics: A study of prediction errors in the boundary layer. Bound.-Layer Meteor., 82 , 473500.

    • Search Google Scholar
    • Export Citation
  • André, J. C., , P. Bougeault, , and J-P. Goutorbe, 1990: Regional estimates of heat and evaporation fluxes over non-homogeneous terrain. Examples from the HAPEX-MOBILHY program. Bound.-Layer Meteor., 50 , 77108.

    • Search Google Scholar
    • Export Citation
  • Anthes, R. A., 1984: Enhancement of convective precipitation by mesoscale variations in vegetative covering in semiarid regions. J. Climate Appl. Meteor., 23 , 541554.

    • Search Google Scholar
    • Export Citation
  • Avissar, R., , and T. Schmidt, 1998: An evaluation of the scale at which ground-surface heat flux patchiness affects the convective boundary layer using large-eddy simulations. J. Atmos. Sci., 55 , 26662689.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., 2004: Understanding hydrometeorology using global models. Bull. Amer. Meteor. Soc., 85 , 16731688.

  • Betts, A. K., , and C. Jakob, 2002: Study of diurnal cycle of convective precipitation over Amazonia using a single column model. J. Geophys. Res., 107 .4732, doi:10.1029/2002JD002264.

    • Search Google Scholar
    • Export Citation
  • Brotzge, J. A., , and K. C. Crawford, 2003: Examination of the surface energy budget: A comparison of eddy-correlation and Bowen-ratio measurement systems. J. Hydrometeor., 4 , 160178.

    • Search Google Scholar
    • Export Citation
  • Chen, F., , T. Warner, , and K. Manning, 2001: Sensitivity of orographic moist convection to landscape variability: A study of the Buffalo Creek, Colorado, flash-flood case of 1996. J. Atmos. Sci., 58 , 32043223.

    • Search Google Scholar
    • Export Citation
  • Chen, F., and Coauthors, 2007: Description and evaluation of the characteristics of the NCAR high-resolution Land Data Assimilation System during IHOP-02. J. Appl. Meteor. Climatol., 46 , 694713.

    • Search Google Scholar
    • Export Citation
  • Couvreux, F., 2005: Water vapor variability in the convective boundary layer. Ph.D. dissertation, University of Toulouse, Toulouse, France, 194 pp.

  • Couvreux, F., , F. Guichard, , J-L. Redelsperger, , C. Kiemle, , V. Masson, , J-P. Lafore, , and C. Flamant, 2005: Water vapour variability within a convective boundary layer assessed by Large Eddy Simulations and IHOP_2002 observations. Quart. J. Roy. Meteor. Soc., 131 , 26652693.

    • Search Google Scholar
    • Export Citation
  • Couvreux, F., , F. Guichard, , V. Masson, , and J-L. Redelsperger, 2007: Negative water vapour skewness and dry tongues in the convective boundary layer: Observations and large-eddy simulation budget analysis. Bound.-Layer Meteor., 123 , 269294.

    • Search Google Scholar
    • Export Citation
  • Crook, N. A., 1996: Sensitivity of moist convection forced by boundary-layer processes to low-level thermodynamics field. Mon. Wea. Rev., 124 , 17671785.

    • Search Google Scholar
    • Export Citation
  • Davis, K. J., , N. Gamage, , C. Hagelberg, , D. H. Lenschow, , C. Kiemle, , and P. P. Sullivan, 2000: An objective method for determining atmospheric structure from airborne lidar observations. J. Atmos. Oceanic Technol., 17 , 14551468.

    • Search Google Scholar
    • Export Citation
  • Desai, A. R., , K. J. Davis, , C. J. Senff, , S. Ismail, , E. V. Browell, , D. R. Stauffer, , and B. P. Reen, 2006: A case-study on the effects of heterogeneous soil moisture on mesoscale boundary-layer structure in the Sounthern Great Plains, U.S.A. I: Simple prognostic model. Bound.-Layer Meteor., 119 , 195238.

    • Search Google Scholar
    • Export Citation
  • Dodd, A. V., 1965: Dew point distribution in the contiguous United States. Mon. Wea. Rev., 93 , 113122.

  • Drusch, M., , and P. Viterbo, 2007: Assimilation of screen-level variables in ECMWF’s Integrated Forecast System: A study on the impact on the forecast quality and analyzed soil moisture. Mon. Wea. Rev., 135 , 300314.

    • Search Google Scholar
    • Export Citation
  • Findell, K. L., , and E. A. B. Eltahir, 2003: Atmospheric controls on soil moisture–boundary layer interactions. Part I: Framework development. J. Hydrometeor., 4 , 552569.

    • Search Google Scholar
    • Export Citation
  • Gao, H., , E. F. Wood, , T. J. Jackson, , M. Drusch, , and R. Bindlish, 2006: Using TRMM/TMI to retrieve surface soil moisture over the southern United States from 1998 to 2002. J. Hydrometeor., 7 , 2338.

    • Search Google Scholar
    • Export Citation
  • Garratt, J. R., 1994: The Atmospheric Boundary Layer. Cambridge University Press, 334 pp.

  • Grell, G. A., , J. Dudhia, , and D. R. Stauffer, 1995: A description of the V generation Penn State/NCAR mesoscale model (MM5). Tech. Rep., National Center for Atmospheric Research, 121 pp.

  • Holt, T., , D. Niyogi, , F. Chen, , K. Manning, , M. A. LeMone, , and A. Qureshi, 2006: Effect of land–atmosphere interactions on the IHOP 24–25 May 2002 convection case. Mon. Wea. Rev., 134 , 113133.

    • Search Google Scholar
    • Export Citation
  • Kang, S-L., , K. J. Davis, , and M. LeMone, 2007: Observations of the BL structures over a heterogeneous land surface during IHOP_2002. J. Hydrometeor., 8 , 221244.

    • Search Google Scholar
    • Export Citation
  • King, M. D., and Coauthors, 2003: Cloud and aerosol properties, precipitable water, and profiles of temperature and water vapor from MODIS. IEEE Trans. Geosci. Remote Sens., 41 , 442458.

    • Search Google Scholar
    • Export Citation
  • LeMone, M. A., and Coauthors, 2007: NCAR/CU surface, soil, and vegetation observations during the International H2O Project 2002 Field Campaign. Bull. Amer. Meteor. Soc., 88 , 6581.

    • Search Google Scholar
    • Export Citation
  • Mahrt, L., 1991: Boundary-layer moisture regimes. Quart. J. Roy. Meteor. Soc., 117 , 151176.

  • Mahrt, L., 2000: Surface heterogeneity and vertical structure of the boundary layer. Bound.-Layer Meteor., 96 , 3362.

  • Milford, J. R., , S. Abdulla, , and D. A. Mansfield, 1979: Eddy flux measurements using an instrumented powered glider. Quart. J. Roy. Meteor. Soc., 105 , 673693.

    • Search Google Scholar
    • Export Citation
  • Pielke, R. A., 2001: Influence of the spatial distribution of vegetation and soils on the prediction of cumulus convective rainfall. Rev. Geophys., 39 , 2. 151177.

    • Search Google Scholar
    • Export Citation
  • Rabin, R. M., , S. Stadler, , P. J. Wetzel, , D. J. Stensrud, , and M. Gregory, 1990: Observed effects of landscape variability on convective clouds. Bull. Amer. Meteor. Soc., 71 , 272280.

    • Search Google Scholar
    • Export Citation
  • Raupach, R. R., , and J. J. Finnigan, 1995: Scale issues in boundary-layer meteorology: Surface energy balances in heterogeneous terrain. Hydrol. Proc., 9 , 589612.

    • Search Google Scholar
    • Export Citation
  • Seemann, S. W., , W. Li, , P. Menzel, , and L. E. Gumley, 2003: Operational retrieval of atmospheric temperature, moisture, and ozone from MODIS infrared radiances. J. Appl. Meteor., 42 , 10721091.

    • Search Google Scholar
    • Export Citation
  • Stirling, A. J., , and J. C. Petch, 2004: The impacts of spatial variability on the development of convection. Quart. J. Roy. Meteor. Soc., 130 , 31893206.

    • Search Google Scholar
    • Export Citation
  • Stull, R. B., 1988: An Introduction to Boundary Layer Meteorology. Kluwer Academic Publishers, 666 pp.

  • Trier, S., , F. Chen, , and K. Manning, 2004: A study of convection initiation in a mesoscale model using high-resolution land surface initiation conditions. Mon. Wea. Rev., 132 , 29542976.

    • Search Google Scholar
    • Export Citation
  • Weckwerth, T. M., and Coauthors, 2004: An overview of the International H20 Project (IHOP_2002) and some preliminary highlights. Bull. Amer. Meteor. Soc., 85 , 253277.

    • Search Google Scholar
    • Export Citation
  • Wilson, J. W., , and R. D. Roberts, 2006: Summary of convective storms initiation and evolution during IHOP: Observational and modeling perspective. Mon. Wea. Rev., 134 , 2347.

    • Search Google Scholar
    • Export Citation
  • Wulfmeyer, V., , H-S. Bauer, , M. Grzeschik, , A. Behrendt, , F. Vandenberghe, , E. V. Browell, , S. Ismail, , and R. A. Ferrare, 2006: Four-dimensional variational assimilation of water vapor differential absorption lidar data: The first case study within IHOP_2002. Mon. Wea. Rev., 134 , 209230.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 38 38 6
PDF Downloads 37 37 13

Nature of the Mesoscale Boundary Layer Height and Water Vapor Variability Observed 14 June 2002 during the IHOP_2002 Campaign

View More View Less
  • 1 GAME-Meteo-France/CNRS-CNRM/GMME, Toulouse, France
  • | 2 Atmospheric Science Programme, Department of Earth and Ocean Sciences, University of British Columbia, Vancouver, British Columbia, Canada
  • | 3 National Center for Atmospheric Research, Boulder, Colorado
© Get Permissions
Restricted access

Abstract

Mesoscale water vapor heterogeneities in the boundary layer are studied within the context of the International H2O Project (IHOP_2002). A significant portion of the water vapor variability in the IHOP_2002 occurs at the mesoscale, with the spatial pattern and the magnitude of the variability changing from day to day. On 14 June 2002, an atypical mesoscale gradient is observed, which is the reverse of the climatological gradient over this area. The factors causing this water vapor variability are investigated using complementary platforms (e.g., aircraft, satellite, and in situ) and models. The impact of surface flux heterogeneities and atmospheric variability are evaluated separately using a 1D boundary layer model, which uses surface fluxes from the High-Resolution Land Data Assimilation System (HRLDAS) and early-morning atmospheric temperature and moisture profiles from a mesoscale model. This methodology, based on the use of robust modeling components, allows the authors to tackle the question of the nature of the observed mesoscale variability. The impact of horizontal advection is inferred from a careful analysis of available observations. By isolating the individual contributions to mesoscale water vapor variability, it is shown that the observed moisture variability cannot be explained by a single process, but rather involves a combination of different factors: the boundary layer height, which is strongly controlled by the surface buoyancy flux, the surface latent heat flux, the early-morning heterogeneity of the atmosphere, horizontal advection, and the radiative impact of clouds.

Corresponding author address: F. Couvreux, GAME-Meteo-France/CNRS-CNRM/GMME, 42 av. G. Coriolis, 31057, Toulouse CEDEX 1, France. Email: fleur.couvreux@meteo.fr

This article included in the International H2O Project (IHOP_2002) special collection.

Abstract

Mesoscale water vapor heterogeneities in the boundary layer are studied within the context of the International H2O Project (IHOP_2002). A significant portion of the water vapor variability in the IHOP_2002 occurs at the mesoscale, with the spatial pattern and the magnitude of the variability changing from day to day. On 14 June 2002, an atypical mesoscale gradient is observed, which is the reverse of the climatological gradient over this area. The factors causing this water vapor variability are investigated using complementary platforms (e.g., aircraft, satellite, and in situ) and models. The impact of surface flux heterogeneities and atmospheric variability are evaluated separately using a 1D boundary layer model, which uses surface fluxes from the High-Resolution Land Data Assimilation System (HRLDAS) and early-morning atmospheric temperature and moisture profiles from a mesoscale model. This methodology, based on the use of robust modeling components, allows the authors to tackle the question of the nature of the observed mesoscale variability. The impact of horizontal advection is inferred from a careful analysis of available observations. By isolating the individual contributions to mesoscale water vapor variability, it is shown that the observed moisture variability cannot be explained by a single process, but rather involves a combination of different factors: the boundary layer height, which is strongly controlled by the surface buoyancy flux, the surface latent heat flux, the early-morning heterogeneity of the atmosphere, horizontal advection, and the radiative impact of clouds.

Corresponding author address: F. Couvreux, GAME-Meteo-France/CNRS-CNRM/GMME, 42 av. G. Coriolis, 31057, Toulouse CEDEX 1, France. Email: fleur.couvreux@meteo.fr

This article included in the International H2O Project (IHOP_2002) special collection.

Save