• Black, M. L., , J. F. Gamache, , F. D. Marks Jr., , C. E. Samsury, , and H. E. Willoughby, 2002: Eastern Pacific Hurricanes Jimena of 1991 and Olivia of 1994: The effect of vertical shear on structure and intensity. Mon. Wea. Rev., 130 , 22912312.

    • Search Google Scholar
    • Export Citation
  • Bolton, D., 1980: The computation of equivalent potential temperature. Mon. Wea. Rev., 108 , 10461053.

  • Braun, S. A., , and L. Wu, 2007: A numerical study of Hurricane Erin (2001). Part II: Shear and the organization of eyewall vertical motion. Mon. Wea. Rev., 135 , 11791194.

    • Search Google Scholar
    • Export Citation
  • Braun, S. A., , M. T. Montgomery, , and Z. Pu, 2006: High-resolution simulation of Hurricane Bonnie (1998). Part I: The organization of eyewall vertical motion. J. Atmos. Sci., 63 , 1942.

    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., , and F. J. Wentz, 2005: Global microwave satellite observations of sea surface temperature for numerical weather prediction and climate research. Bull. Amer. Meteor. Soc., 86 , 10971115.

    • Search Google Scholar
    • Export Citation
  • Chen, S. S., , J. A. Knaff, , and F. D. Marks Jr., 2006: Effects of vertical wind shear and storm motion on tropical cyclone rainfall asymmetries deduced from TRMM. Mon. Wea. Rev., 134 , 31903208.

    • Search Google Scholar
    • Export Citation
  • Corbosiero, K. L., , and J. Molinari, 2002: The effects of vertical wind shear on the distribution of convection in tropical cyclones. Mon. Wea. Rev., 130 , 21102123.

    • Search Google Scholar
    • Export Citation
  • Cram, T. A., , J. Persing, , M. T. Montgomery, , and S. A. Braun, 2007: A Lagrangian trajectory view on transport and mixing processes between the eye, eyewall, and environment using a high-resolution simulation of Hurricane Bonnie (1998). J. Atmos. Sci., 64 , 18351856.

    • Search Google Scholar
    • Export Citation
  • Davis, C. A., , and L. F. Bosart, 2003: Baroclinically induced tropical cyclogenesis. Mon. Wea. Rev., 131 , 27302747.

  • Davis, C. A., , and L. F. Bosart, 2004: The TT problem: Forecasting the tropical transition of cyclones. Bull. Amer. Meteor. Soc., 85 , 16571662.

    • Search Google Scholar
    • Export Citation
  • DeMaria, M., , M. Mainelli, , L. K. Shay, , J. A. Knaff, , and J. Kaplan, 2005: Further improvements to the Statistical Hurricane Intensity Prediction Scheme (SHIPS). Wea. Forecasting, 20 , 531543.

    • Search Google Scholar
    • Export Citation
  • Dvorak, V. F., 1984: Tropical Cyclone intensity analysis using satellite data. NOAA Tech. Rep. NESDIS 11, 47 pp. [Available from National Technical Information Service, 5285 Port Royal Rd., Springfield, VA 22161.].

  • Eastin, M. D., , P. G. Black, , and W. M. Gray, 2002: Flight-level thermodynamic instrument wetting errors in hurricanes. Part I: Observations. Mon. Wea. Rev., 130 , 825841.

    • Search Google Scholar
    • Export Citation
  • Eastin, M. D., , W. M. Gray, , and P. G. Black, 2005: Buoyancy of convective vertical motions in the inner core of intense hurricanes. Part I: General statistics. Mon. Wea. Rev., 133 , 188208.

    • Search Google Scholar
    • Export Citation
  • Eastin, M. D., , P. D. Reasor, , D. S. Nolan, , F. D. Marks Jr., , and J. F. Gamache, 2006: Evolution of low-wavenumber vorticity during rapid intensification: A dual Doppler analysis. Preprints, 27th Conf. on Hurricanes and Tropical Meteorology, Monterey, CA, Amer. Meteor. Soc., 4B.6. [Available online at http://ams.confex.com/ams/pdfpapers/108393.pdf.].

  • Enagonio, J., , and M. T. Montgomery, 2001: Tropical cyclogenesis via convectively forced vortex Rossby waves in a shallow water primitive equation model. J. Atmos. Sci., 58 , 685706.

    • Search Google Scholar
    • Export Citation
  • Frank, W. M., , and E. A. Ritchie, 2001: Effects of vertical wind shear on the intensity and structure of numerically simulated hurricanes. Mon. Wea. Rev., 129 , 22492269.

    • Search Google Scholar
    • Export Citation
  • Hanley, D., , J. Molinari, , and D. Keyser, 2001: A composite study of the interactions between tropical cyclones and upper-tropospheric troughs. Mon. Wea. Rev., 129 , 25702584.

    • Search Google Scholar
    • Export Citation
  • Hawkins, H. F., , and S. M. Imbembo, 1976: The structure of a small, intense hurricane—Inez 1966. Mon. Wea. Rev., 104 , 418442.

  • Hendricks, E. A., , M. T. Montgomery, , and C. A. Davis, 2004: The role of “vortical” hot towers in the formation of Tropical Cyclone Diana (1984). J. Atmos. Sci., 61 , 12091232.

    • Search Google Scholar
    • Export Citation
  • Hoffman, R. N., , and S. M. Leidner, 2005: An introduction to the near-real-time QuikSCAT data. Wea. Forecasting, 20 , 476493.

  • Kelley, O. A., , J. Stout, , and J. B. Halverson, 2004: Tall precipitation cells in tropical cyclone eyewalls are associated with tropical cyclone intensification. Geophys. Res. Lett., 31 .L24112, doi:10.1029/2004GL021616.

    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., , and M. D. Eastin, 2001: Two distinct regimes in the kinematic and thermodynamic structure of the hurricane eye and eyewall. J. Atmos. Sci., 58 , 10791090.

    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., , and W. H. Schubert, 2001: Mesovortices, polygonal flow patterns, and rapid pressure falls in hurricane-like vortices. J. Atmos. Sci., 58 , 21962209.

    • Search Google Scholar
    • Export Citation
  • Lawrence, M. B., , L. A. Avila, , J. L. Beven, , J. L. Franklin, , R. J. Pasch, , and S. R. Stewart, 2005: Atlantic hurricane season of 2003. Mon. Wea. Rev., 133 , 17441773.

    • Search Google Scholar
    • Export Citation
  • Lungu, T., 2001: QuikSCAT science data product user’s manual: Overview and geophysical data products. JPL D-18053, Version 2.2, Jet Propulsion Laboratory, Pasadena, CA, 95 pp.

  • Marks Jr., F. D., , R. A. Houze Jr., , and S. S. Chen, 1992: Dual-aircraft investigation of the inner core of Hurricane Norbert. Part I: Kinematic structure. J. Atmos. Sci., 49 , 919942.

    • Search Google Scholar
    • Export Citation
  • Molinari, J., , D. Vollaro, , and K. L. Corbosiero, 2004: Tropical cyclone formation in a sheared environment: A case study. J. Atmos. Sci., 61 , 24932509.

    • Search Google Scholar
    • Export Citation
  • Molinari, J., , P. Dodge, , D. Vollaro, , K. L. Corbosiero, , and F. Marks Jr., 2006: Mesoscale aspects of downshear reformation of a tropical cyclone. J. Atmos. Sci., 63 , 341354.

    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., , M. E. Nicholls, , T. A. Cram, , and A. B. Saunders, 2006: A vortical hot tower route to tropical cyclogenesis. J. Atmos. Sci., 63 , 435465.

    • Search Google Scholar
    • Export Citation
  • Powell, M. D., 1990: Boundary layer structure and dynamics in outer hurricane rainbands. Part II: Downdraft modification and mixed layer recovery. Mon. Wea. Rev., 118 , 918938.

    • Search Google Scholar
    • Export Citation
  • Powell, M. D., , S. H. Houston, , L. R. Amat, , and N. Morisseau-Leroy, 1998: The HRD real-time hurricane wind analysis system. J. Wind Eng. Ind. Aerodyn., 77–78 , 5364.

    • Search Google Scholar
    • Export Citation
  • Reasor, P. D., , M. T. Montgomery, , F. D. Marks Jr., , and J. F. Gamache, 2000: Low-wavenumber structure and evolution of the hurricane inner core observed by airborne dual-Doppler radar. Mon. Wea. Rev., 128 , 16531680.

    • Search Google Scholar
    • Export Citation
  • Rogers, R., , S. Chen, , J. Tenerelli, , and H. Willoughby, 2003: A numerical study of the impact of vertical shear on the distribution of rainfall in Hurricane Bonnie (1998). Mon. Wea. Rev., 131 , 15771599.

    • Search Google Scholar
    • Export Citation
  • Shelton, K. L., 2005: Thermodynamic structure of tropical cyclones from aircraft reconnaissance. M.S. thesis, Dept. of Earth and Atmospheric Sciences, University at Albany, State University of New York, 166 pp.

  • Simpson, R. H., , and H. Riehl, 1958: Mid-tropospheric ventilation as a constraint on hurricane development and maintenance. Proc. Tech. Conf. on Hurricanes, Miami, FL, Amer. Meteor. Soc., D4.1–D4.10.

  • Wong, M. L. M., , and J. C. L. Chan, 2004: Tropical cyclone intensity in vertical wind shear. J. Atmos. Sci., 61 , 18591876.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 17 17 2
PDF Downloads 16 16 3

Life of a Six-Hour Hurricane

View More View Less
  • 1 Department of Earth and Atmospheric Sciences, University at Albany, State University of New York, Albany, New York
© Get Permissions
Restricted access

Abstract

Hurricane Claudette developed from a weak vortex in 6 h as deep convection shifted from downshear into the vortex center, despite ambient vertical wind shear exceeding 10 m s−1. Six hours later it weakened to a tropical storm, and 12 h after the hurricane stage a circulation center could not be found at 850 hPa by aircraft reconnaissance. At hurricane strength the vortex contained classic structure seen in intensifying hurricanes, with the exception of 7°–12°C dewpoint depressions in the lower troposphere upshear of the center. These extended from the 100-km radius to immediately adjacent to the eyewall, where equivalent potential temperature gradients reached 6 K km−1. The dry air was not present prior to intensification, suggesting that it was associated with vertical shear–induced subsidence upshear of the developing storm. It is argued that weakening of the vortex was driven by cooling associated with the mixing of dry air into the core, and subsequent evaporation and cold downdrafts. Evidence suggests that this mixing might have been enhanced by eyewall instabilities after the period of rapid deepening. The existence of a fragile, small, but genuinely hurricane-strength vortex at the surface for 6 h presents difficult problems for forecasters. Such a “temporary hurricane” in strongly sheared flow might require a different warning protocol than longer-lasting hurricane vortices in weaker shear.

Corresponding author address: Kay L. Shelton, Department of Earth and Atmospheric Sciences, University at Albany, SUNY, 1400 Washington Ave., Albany, NY 12222. Email: kay@atmos.albany.edu

Abstract

Hurricane Claudette developed from a weak vortex in 6 h as deep convection shifted from downshear into the vortex center, despite ambient vertical wind shear exceeding 10 m s−1. Six hours later it weakened to a tropical storm, and 12 h after the hurricane stage a circulation center could not be found at 850 hPa by aircraft reconnaissance. At hurricane strength the vortex contained classic structure seen in intensifying hurricanes, with the exception of 7°–12°C dewpoint depressions in the lower troposphere upshear of the center. These extended from the 100-km radius to immediately adjacent to the eyewall, where equivalent potential temperature gradients reached 6 K km−1. The dry air was not present prior to intensification, suggesting that it was associated with vertical shear–induced subsidence upshear of the developing storm. It is argued that weakening of the vortex was driven by cooling associated with the mixing of dry air into the core, and subsequent evaporation and cold downdrafts. Evidence suggests that this mixing might have been enhanced by eyewall instabilities after the period of rapid deepening. The existence of a fragile, small, but genuinely hurricane-strength vortex at the surface for 6 h presents difficult problems for forecasters. Such a “temporary hurricane” in strongly sheared flow might require a different warning protocol than longer-lasting hurricane vortices in weaker shear.

Corresponding author address: Kay L. Shelton, Department of Earth and Atmospheric Sciences, University at Albany, SUNY, 1400 Washington Ave., Albany, NY 12222. Email: kay@atmos.albany.edu

Save