• Adamson, D. S., , S. E. Belcher, , and B. J. Hoskins, 2006: Boundary layer friction in midlatitude cyclones. Quart. J. Roy. Meteor. Soc., 132 , 101124.

    • Search Google Scholar
    • Export Citation
  • Anderson, D., , K. I. Hodges, , and B. J. Hoskins, 2003: Sensitivity of feature-based analysis methods of storm tracks to the form of background field removal. Mon. Wea. Rev., 131 , 565573.

    • Search Google Scholar
    • Export Citation
  • Bengtsson, L., , K. I. Hodges, , and E. Roeckner, 2006: Storm tracks and climate change. J. Climate, 19 , 35183543.

  • Bishop, C. H., , and A. J. Thorpe, 1994: Frontal wave stability during moist deformation frontogenesis. Part I: Linear wave dynamics. J. Atmos. Sci., 51 , 874888.

    • Search Google Scholar
    • Export Citation
  • Blender, R. M., , and M. Schubert, 2000: Cyclone tracking in different spatial and temporal resolution. Mon. Wea. Rev., 128 , 377384.

  • Browning, K. A., , and N. M. Roberts, 1994: Structure of a frontal cyclone. Quart. J. Roy. Meteor. Soc., 120 , 15351557.

  • Carlson, T. N., 1980: Airflow through midlatitude cyclones and the comma cloud pattern. Mon. Wea. Rev., 108 , 14981509.

  • Chaboureau, J-P., , and A. Thorpe, 1999: Frontogenesis and the development of secondary wave cyclones in FASTEX. Quart. J. Roy. Meteor. Soc., 125 , 925940.

    • Search Google Scholar
    • Export Citation
  • Chang, E. K. M., , and S. Song, 2006: The seasonal cyclones in the distribution of precipitation around cyclones in the western North Pacific and Atlantic. J. Atmos. Sci., 63 , 815839.

    • Search Google Scholar
    • Export Citation
  • Clough, S. A., , C. S. A. Davitt, , and A. J. Thorpe, 1996: Attribution concepts applied to the omega equation. Quart. J. Roy. Meteor. Soc., 122 , 19431962.

    • Search Google Scholar
    • Export Citation
  • Colucci, S. J., 1976: Winter cyclone frequencies over the eastern United States and adjacent western Atlantic. Bull. Amer. Meteor. Soc., 57 , 548553.

    • Search Google Scholar
    • Export Citation
  • Dacre, H. F., , and S. L. Gray, 2006: Life-cycle simulations of shallow frontal waves and the impact of deformation strain. Quart. J. Roy. Meteor. Soc., 132 , 21712190.

    • Search Google Scholar
    • Export Citation
  • Deveson, A. C. L., , K. A. Browning, , and T. D. Hewson, 2002: A classification of FASTEX cyclones using a height-attributable quasi-geostrophic vertical-motion diagnostic. Quart. J. Roy. Meteor. Soc., 128 , 93117.

    • Search Google Scholar
    • Export Citation
  • Field, P. R., , and R. Wood, 2007: Precipitation and cloud structure in midlatitude cyclones. J. Climate, 20 , 233254.

  • Geng, Q., , and M. Sugi, 2001: Variability of the North Atlantic cyclone activity in winter analysed from NCEP–NCAR reanalysis data. J. Climate, 14 , 38633873.

    • Search Google Scholar
    • Export Citation
  • Gray, S. L., 2003: Stratosphere to troposphere exchange: The role of convective transport and the sensitivity to model resolution. J. Geophys. Res., 108 , 45904606.

    • Search Google Scholar
    • Export Citation
  • Gray, S. L., , and H. F. Dacre, 2006: Classifying dynamical forcing mechanisms using a climatology of extratropical cyclones. Quart. J. Roy. Meteor. Soc., 132 , 11191137.

    • Search Google Scholar
    • Export Citation
  • Gulev, S. K., , O. Zolina, , and S. Gringoriev, 2001: Extratropical cyclone variability in the Northern Hemisphere winter from the NCEP/NCAR reanalysis data. Climate Dyn., 17 , 795809.

    • Search Google Scholar
    • Export Citation
  • Hewson, T. D., 1997: Objective identification of frontal wave cyclones. Meteor. Appl., 4 , 311315.

  • Hewson, T. D., 1998a: A frontal wave database. Tech. Rep. 85, Met Office, Exeter, United Kingdom, 20 pp.

  • Hewson, T. D., 1998b: Objective fronts. Meteor. Appl., 5 , 3765.

  • Hewson, T. D., 2001: A cyclone database. Tech. Rep., Met Office, Exeter, United Kingdom, 20 pp.

  • Hodges, K. I., 1994: A general method for tracking analysis and its application to meteorological data. Mon. Wea. Rev., 122 , 25732586.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., , and P. Berrisford, 1998: A potential vorticity perspective of the storm of 15–16 October 1987. Weather, 43 , 122129.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., , and K. I. Hodges, 2002: New perspectives on the Northern Hemisphere winter storm tracks. J. Atmos. Sci., 59 , 10411061.

    • Search Google Scholar
    • Export Citation
  • Klein, S. A., , and C. Jakob, 1999: Validation and sensitivities of frontal clouds simulated by the ECMWF model. Mon. Wea. Rev., 127 , 25142531.

    • Search Google Scholar
    • Export Citation
  • König, W., , R. Sausen, , and F. Sielmann, 1993: Objective identification of cyclones in GCM simulations. J. Climate, 6 , 22172231.

  • Lau, N. C., , and M. W. Crane, 1995: A satellite view of the synoptic-scale organization of cloud properties in midlatitude and tropical circulation systems. Mon. Wea. Rev., 123 , 19842006.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., and Coauthors, 2007: Global climate projections. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 788–789.

    • Search Google Scholar
    • Export Citation
  • Murray, R. J., , and I. Simmonds, 1991: A numerical scheme for tracking cyclone centres from digital data. Part 1: Development and operation of the scheme. Aust. Meteor. Mag., 39 , 155166.

    • Search Google Scholar
    • Export Citation
  • Parker, D. J., 1998: Secondary frontal waves in the North Atlantic region: A dynamical perspective of current ideas. Quart. J. Roy. Meteor. Soc., 124 , 829856.

    • Search Google Scholar
    • Export Citation
  • Petterssen, S., , and S. J. Smebye, 1971: On the development of extratropical cyclones. Quart. J. Roy. Meteor. Soc., 97 , 457482.

  • Pinto, J. G., , T. Spangehl, , U. Ulbrich, , and P. Speth, 2005: Sensitivities of a cyclone detection and tracking algorithm: Individual tracks and climatology. Meteor. Z., 14 , 823838.

    • Search Google Scholar
    • Export Citation
  • Pinto, J. G., , S. Zacharias, , A. H. Fink, , G. C. Leckebusch, , and U. Ulbrich, 2008: Factors contributing to the development of extreme North Atlantic cyclones and their relationship with the NAO. Climate Dyn., doi:10.1007/S00382-008-0396-4.

    • Search Google Scholar
    • Export Citation
  • Plant, R. S., , G. C. Craig, , and S. L. Gray, 2003: On a threefold classification of extratropical cyclogenesis. Quart. J. Roy. Meteor. Soc., 129 , 29693012.

    • Search Google Scholar
    • Export Citation
  • Raible, C. C., , P. M. Della-Marta, , C. Schwierz, , H. Wernli, , and R. Blender, 2008: Northern Hemisphere extratropical cyclones: A comparison of detection and tracking methods and different reanalyses. Mon. Wea. Rev., 136 , 890897.

    • Search Google Scholar
    • Export Citation
  • Reed, R. J., , G. A. Grell, , and Y. H. Kuo, 1993: The ERICA IOP5 storm. Part II: Sensitivity tests and further diagnosis based on model output. Mon. Wea. Rev., 121 , 15951612.

    • Search Google Scholar
    • Export Citation
  • Renfrew, I. A., , A. J. Thorpe, , and C. H. Bishop, 1997: The role of the environmental flow in the development of secondary frontal cyclones. Quart. J. Roy. Meteor. Soc., 123 , 16531675.

    • Search Google Scholar
    • Export Citation
  • Rivals, H., , J-P. Cammas, , and I. A. Renfrew, 1998: Secondary cyclogenesis: The initiation phase of a frontal wave observed over the eastern Atlantic. Quart. J. Roy. Meteor. Soc., 124 , 243267.

    • Search Google Scholar
    • Export Citation
  • Roebber, P. J., 1984: Statistical analysis and updated climatology of explosive cyclones. Mon. Wea. Rev., 112 , 15771589.

  • Sanders, F., , and J. R. Gyakum, 1980: Synoptic-dynamic climatology of the “bomb”. Mon. Wea. Rev., 108 , 15891606.

  • Sickmöller, M., , R. Blender, , and K. Fraedrich, 2000: Observed winter cyclone tracks in the northern hemisphere in re-analysed ECMWF data. Quart. J. Roy. Meteor. Soc., 126 , 591620.

    • Search Google Scholar
    • Export Citation
  • Sinclair, M. R., 1997: Objective identification of cyclones and their circulation, intensity, and climatology. Wea. Forecasting, 12 , 595612.

    • Search Google Scholar
    • Export Citation
  • Stoelinga, M. T., 1996: A potential vorticity-based study on the role of diabatic heating and friction in a numerically simulated baroclinic cyclone. Mon. Wea. Rev., 124 , 849874.

    • Search Google Scholar
    • Export Citation
  • Trigo, I. F., 2006: Climatology and interannual variability of storm-tracks in the Euro-Atlantic sector: A comparison between ERA-40 and NCEP/NCAR reanalyses. Climate Dyn., 26 , 127143.

    • Search Google Scholar
    • Export Citation
  • Trigo, I. F., , T. D. Davies, , and G. R. Bigg, 1999: Objective climatology of cyclones in the Mediterranean region. J. Climate, 12 , 16851696.

    • Search Google Scholar
    • Export Citation
  • Wang, C. C., , and J. C. Rogers, 2001: A composite study of explosive cyclogenesis in different sectors of the North Atlantic. Part I: Cyclone structure and evolution. Mon. Wea. Rev., 129 , 14811499.

    • Search Google Scholar
    • Export Citation
  • Wernli, H., , and C. Schwierz, 2006: Surface cyclones in the ERA-40 dataset (1958–2001). Part I: Novel identification method and global climatology. J. Atmos. Sci., 63 , 24862507.

    • Search Google Scholar
    • Export Citation
  • Whittaker, L. M., , and L. H. Horn, 1984: Northern hemisphere extratropical cyclone activity for four mid-season months. J. Climatol., 4 , 297310.

    • Search Google Scholar
    • Export Citation
  • Zolina, O., , and S. K. Gulev, 2002: Improving the accuracy of mapping cyclone numbers and frequencies. Mon. Wea. Rev., 130 , 748759.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 69 69 2
PDF Downloads 66 66 0

The Spatial Distribution and Evolution Characteristics of North Atlantic Cyclones

View More View Less
  • 1 University of Reading, Reading, United Kingdom
© Get Permissions
Restricted access

Abstract

A climatology of extratropical cyclones is produced using an objective method of identifying cyclones based on gradients of 1-km height wet-bulb potential temperature. Cyclone track and genesis density statistics are analyzed and this method is found to compare well with other cyclone identification methods. The North Atlantic storm track is reproduced along with the major regions of genesis. Cyclones are grouped according to their genesis location and the corresponding lysis regions are identified. Most of the cyclones that cross western Europe originate in the east Atlantic where the baroclinicity and the sea surface temperature gradients are weak compared to the west Atlantic. East Atlantic cyclones also have higher 1-km height relative vorticity and lower mean sea level pressure at their genesis point than west Atlantic cyclones. This is consistent with the hypothesis that they are secondary cyclones developing on the trailing fronts of preexisting “parent” cyclones. The evolution characteristics of composite west and east Atlantic cyclones have been compared. The ratio of their upper- to lower-level forcing indicates that type B cyclones are predominant in both the west and east Atlantic, with strong upper- and lower-level features. Among the remaining cyclones, there is a higher proportion of type C cyclones in the east Atlantic, whereas types A and C are equally frequent in the west Atlantic.

Corresponding author address: H. F. Dacre, Department of Meteorology, University of Reading, Earley Gate, Reading RG6 6BB, United Kingdom. Email: h.f.dacre@reading.ac.uk

Abstract

A climatology of extratropical cyclones is produced using an objective method of identifying cyclones based on gradients of 1-km height wet-bulb potential temperature. Cyclone track and genesis density statistics are analyzed and this method is found to compare well with other cyclone identification methods. The North Atlantic storm track is reproduced along with the major regions of genesis. Cyclones are grouped according to their genesis location and the corresponding lysis regions are identified. Most of the cyclones that cross western Europe originate in the east Atlantic where the baroclinicity and the sea surface temperature gradients are weak compared to the west Atlantic. East Atlantic cyclones also have higher 1-km height relative vorticity and lower mean sea level pressure at their genesis point than west Atlantic cyclones. This is consistent with the hypothesis that they are secondary cyclones developing on the trailing fronts of preexisting “parent” cyclones. The evolution characteristics of composite west and east Atlantic cyclones have been compared. The ratio of their upper- to lower-level forcing indicates that type B cyclones are predominant in both the west and east Atlantic, with strong upper- and lower-level features. Among the remaining cyclones, there is a higher proportion of type C cyclones in the east Atlantic, whereas types A and C are equally frequent in the west Atlantic.

Corresponding author address: H. F. Dacre, Department of Meteorology, University of Reading, Earley Gate, Reading RG6 6BB, United Kingdom. Email: h.f.dacre@reading.ac.uk

Save