• Atkins, N. T., , M. L. Weisman, , and L. J. Wicker, 1999: The influence of preexisting boundaries on supercell evolution. Mon. Wea. Rev., 127 , 29102927.

    • Search Google Scholar
    • Export Citation
  • Barber, D. A., , and L. J. Mahrt, 1981: A statistical study of dependence of hailstorm severity on environmental conditions. Mon. Wea. Rev., 109 , 13481352.

    • Search Google Scholar
    • Export Citation
  • Barnes, G., 2001: Severe local storms in the Tropics. Severe Convective Storms, Meteor. Monogr., No. 28, Amer. Mereor. Soc., 359–432.

  • Bentley, M. L., , M. Buban, , and S. Cooper, 2002: A multiscale observational case study of the development of an isolated High Plains tornadic supercell. Wea. Forecasting, 17 , 12681276.

    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., 2000: A tornadic supercell over elevated, complex terrain: The Divide, Colorado, storm of 12 July 1996. Mon. Wea. Rev., 128 , 795809.

    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., , and S. S. Parker, 1993: Modes of isolated, severe convective storm formation along the dryline. Mon. Wea. Rev., 121 , 13541372.

    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., , and M. L. Weisman, 2000: The interaction of numerically simulated supercells initiated along lines. Mon. Wea. Rev., 128 , 31283149.

    • Search Google Scholar
    • Export Citation
  • Bosart, L. F., , A. Seimon, , K. D. LaPenta, , and M. J. Dickinson, 2006: Supercell tornadogenesis over complex terrain: The Great Barrington, Massachusetts, tornado on 29 May 1995. Wea. Forecasting, 21 , 897922.

    • Search Google Scholar
    • Export Citation
  • Brandes, E. A., , R. P. Davies-Jones, , and B. C. Johnson, 1988: Streamwise vorticity effects on supercell morphology and persistence. J. Atmos. Sci., 45 , 947963.

    • Search Google Scholar
    • Export Citation
  • Browning, K. A., 1964: Airflow and precipitation trajectories within severe local storms which travel to the right of the winds. J. Atmos. Sci., 21 , 634639.

    • Search Google Scholar
    • Export Citation
  • Browning, K. A., 1977: The structure and mechanism of hailstorms. Hail: A Review of Hail Science and Hail Suppression, Meteor. Monogr., No. 38, Amer. Meteor. Soc., 1–39.

  • Bunkers, M. J., , M. R. Hjelmfelt, , and P. L. Smith, 2006a: An observational examination of long-lived supercells. Part I: Characteristics, evolution, and demise. Wea. Forecasting, 21 , 673688.

    • Search Google Scholar
    • Export Citation
  • Bunkers, M. J., , J. S. Johnson, , L. J. Czepyha, , J. M. Grzywacz, , B. A. Klimowski, , and M. R. Hjelmfelt, 2006b: An observational examination of long-lived supercells. Part II: Environmental conditions and forecasting. Wea. Forecasting, 21 , 689714.

    • Search Google Scholar
    • Export Citation
  • Cai, H., , and R. M. Wakimoto, 2001: Retrieved pressure field and its influence on the propagation of a supercell thunderstorm. Mon. Wea. Rev., 129 , 26952713.

    • Search Google Scholar
    • Export Citation
  • Carlson, T. N., , S. G. Benjamin, , and G. S. Forbes, 1983: Elevated mixed layers in the regional severe storm environment: Conceptual model and case study. Mon. Wea. Rev., 111 , 14531473.

    • Search Google Scholar
    • Export Citation
  • Chancibault, K., , V. Ducroq, , and J-P. Lafore, 2003: A numerical study of a nontornadic supercell over France. Mon. Wea. Rev., 131 , 22902311.

    • Search Google Scholar
    • Export Citation
  • Charba, J., , and Y. Sasaki, 1971: Structure and movement of the severe thunderstorms of 3 April 1964 as revealed from radar and surface mesonetwork data analysis. J. Meteor. Soc. Japan, 49 , 191214.

    • Search Google Scholar
    • Export Citation
  • Chen, G. T-J., , and H-C. Chou, 1993: General characteristics of squall lines observed in TAMEX. Mon. Wea. Rev., 121 , 726733.

  • Chen, G. T-J., , C-C. Wang, , and H-C. Chou, 2007: Case study of a bow echo near Taiwan during wintertime. J. Meteor. Soc. Japan, 85 , 233253.

    • Search Google Scholar
    • Export Citation
  • Colby, F. P., 1984: Convective inhibition as a predictor of convection during AVE-SESAME-2. Mon. Wea. Rev., 112 , 22392252.

  • Cotton, W. R., , and R. A. Anthes, 1989: Storm and Cloud Dynamics. Academic Press, 573 pp.

  • Davies, J. M., 1993: Hourly helicity, instability, and EHI in forecasting supercell tornadoes. Preprints, 17th Conf. on Severe Local Storms, St. Louis, MO, Amer. Meteor. Soc., 107–111.

  • Davies-Jones, R. P., 1984: Streamwise vorticity: The origin of updraft rotation in supercell storms. J. Atmos. Sci., 41 , 29913006.

  • Davies-Jones, R. P., 2002: Linear and nonlinear propagation of supercell storms. J. Atmos. Sci., 59 , 31783205.

  • Davies-Jones, R. P., , D. W. Burgess, , and M. Foster, 1990: Test of helicity as a tornado forecast parameter. Preprints, 16th Conf. on Severe Local Storms, Kananaskis Park, AB, Canada, Amer. Meteor. Soc., 588–592.

  • Davies-Jones, R. P., , R. J. Trapp, , and H. B. Bluestein, 2001: Tornadoes and tornadic storms. Severe Convective Storms, Meteor. Monogr., No. 28, Amer. Meteor. Soc., 167–221.

  • Dessens, J., , and J. T. Snow, 1993: Comparative description of tornadoes in France and the United States. The Tornado: Its Structure, Dynamics, Prediction, and Hazards, Geophys. Monogr., Vol. 79, Amer. Geophys. Union, 110–132.

    • Search Google Scholar
    • Export Citation
  • Doswell III, C. A., 1980: Synoptic-scale environments associated with High Plains severe thunderstorms. Bull. Amer. Meteor. Soc., 61 , 13881400.

    • Search Google Scholar
    • Export Citation
  • Doswell III, C. A., 2001: Severe convective storms—An overview. Severe Convective Storms, Meteor. Monogr., No. 28, Amer. Meteor. Soc., 1–26.

  • Doswell III, C. A., , and D. W. Burgess, 1993: Tornadoes and tornadic storms: A review of conceptual models. The Tornado: Its Structure, Dynamics, Prediction, and Hazards, Geophys. Monogr., Vol. 79, Amer. Geophys. Union, 161–182.

    • Search Google Scholar
    • Export Citation
  • Edwards, R., , and S. J. Hodanish, 2006: Photographic documentation and environmental analysis of an intense, anticyclonic supercell on the Colorado Plains. Mon. Wea. Rev., 134 , 37533763.

    • Search Google Scholar
    • Export Citation
  • Endlich, R. M., , and R. L. Mancuso, 1968: Objective analysis of environmental conditions associated with severe thunderstorm and tornadoes. Mon. Wea. Rev., 96 , 342350.

    • Search Google Scholar
    • Export Citation
  • Fujita, T., 1973: Tornadoes around the world. Weatherwise, 26 , 56627883.

  • Fujita, T., , and H. Grandoso, 1968: Split of a thunderstorm into anticyclonic and cyclonic storms and their motion as determined from numerical model experiments. J. Atmos. Sci., 25 , 416439.

    • Search Google Scholar
    • Export Citation
  • Hart, J. A., , and W. Korotky, 1991: The SHARP workstation v1.50 users guide. National Weather Service, NOAA, 30 pp. [Available from NWS Eastern Region Headquarters, 630 Johnson Ave., Bohemia, NY 11716.].

  • Huang, W-T., , and G. T-J. Chen, 2002: A diagnostic study of severe weather events over northern Taiwan in winter (in Chinese with English abstract). Atmos. Sci., 30 , 217240.

    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., , and C. A. Doswell III, 1992: Severe local storms forecasting. Wea. Forecasting, 7 , 588612.

  • Johnson, R. H., , and B. E. Mapes, 2001: Mesoscale processes and severe convective weather. Severe Convective Storms, Meteor. Monogr., No. 28, Amer. Meteor. Soc., 71–122.

  • Keighton, S. J., , H. B. Bluestein, , and D. R. MacGorman, 1991: The evolution of a severe mesoscale convective system: Cloud-to-ground lightning location and storm structure. Mon. Wea. Rev., 119 , 15331556.

    • Search Google Scholar
    • Export Citation
  • Klemp, J. B., 1987: Dynamics of tornadic thunderstorms. Annu. Rev. Fluid Mech., 19 , 369402.

  • Klemp, J. B., , and R. B. Wilhelmson, 1978: Simulations of right- and left-moving storms produced through storm splitting. J. Atmos. Sci., 35 , 10971110.

    • Search Google Scholar
    • Export Citation
  • Kulie, M. S., , and Y-L. Lin, 1998: The structure and evolution of a numerically simulated high-precipitation supercell thunderstorm. Mon. Wea. Rev., 126 , 20902116.

    • Search Google Scholar
    • Export Citation
  • Lang, T. J., and Coauthors, 2004: The Severe Thunderstorm Electrification and Precipitation Study. Bull. Amer. Meteor. Soc., 85 , 11071125.

    • Search Google Scholar
    • Export Citation
  • Lee, B. D., , B. F. Jewett, , and R. B. Wilhelmson, 2006: The 19 April 1996 Illinois tornado outbreak. Part I: Cell evolution and supercell isolation. Wea. Forecasting, 21 , 433448.

    • Search Google Scholar
    • Export Citation
  • Lemon, L. R., , and C. A. Doswell III, 1979: Severe thunderstorm evolution and mesocyclone structure as related to tornadogenesis. Mon. Wea. Rev., 107 , 11841197.

    • Search Google Scholar
    • Export Citation
  • Maddox, R. A., 1976: An evaluation of tornado proximity wind and stability data. Mon. Wea. Rev., 104 , 133142.

  • Maddox, R. A., , L. R. Hoxit, , and C. F. Chappell, 1980: A study of tornadic thunderstorm interactions with thermal boundaries. Mon. Wea. Rev., 108 , 322336.

    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., , E. N. Rasmussen, , and J. M. Straka, 1998: The occurrence of tornadoes in supercells interacting with boundaries during VORTEX-95. Wea. Forecasting, 13 , 852859.

    • Search Google Scholar
    • Export Citation
  • Marwitz, J. D., 1972: The structure and motion of severe hailstorms. Part II: Multi-cell storms. J. Appl. Meteor., 11 , 180188.

  • McCaul Jr., E. W., , and M. L. Weisman, 2001: The sensitivity of simulated supercell structure and intensity to variations in the shapes of environmental buoyancy and shear profiles. Mon. Wea. Rev., 129 , 664687.

    • Search Google Scholar
    • Export Citation
  • Moller, A. R., , C. A. Doswell III, , M. P. Foster, , and G. R. Woodall, 1994: The operational recognition of supercell thunderstorm environments and storm structure. Wea. Forecasting, 9 , 327347.

    • Search Google Scholar
    • Export Citation
  • Moncrieff, M. W., , and J. S. A. Green, 1972: The propagation and transfer properties of steady convective overturning in shear. Quart. J. Roy. Meteor. Soc., 98 , 336352.

    • Search Google Scholar
    • Export Citation
  • Monteverdi, J. P., , and S. Johnson, 1996: A supercell thunderstorm with hook echo in the San Joaquin Valley, California. Wea. Forecasting, 11 , 246261.

    • Search Google Scholar
    • Export Citation
  • Monteverdi, J. P., , W. Blier, , G. Stumpf, , W. Pi, , and K. Anderson, 2001: First WSR-88D documentation of an anticyclonic supercell with anticyclonic tornadoes: The Sunnyvale-Los Altos, California, Tornadoes of 4 May 1998. Mon. Wea. Rev., 129 , 28052814.

    • Search Google Scholar
    • Export Citation
  • Onogi, K., 1998: A data quality control method using horizontal gradient and tendency in a NWP system: Dynamic QC. J. Meteor. Soc. Japan, 76 , 497516.

    • Search Google Scholar
    • Export Citation
  • Orville, R. E., , and R. W. Henderson, 1986: Global distribution of midnight lightning: September 1977 to August 1978. Mon. Wea. Rev., 114 , 26402653.

    • Search Google Scholar
    • Export Citation
  • Rasmussen, E. N., 2003: Refined supercell and tornado forecast parameters. Wea. Forecasting, 18 , 530535.

  • Rasmussen, E. N., , and D. O. Blanchard, 1998: A baseline climatology of sounding-derived supercell and tornado forecast parameters. Wea. Forecasting, 13 , 11481164.

    • Search Google Scholar
    • Export Citation
  • Rasmussen, E. N., , J. M. Straka, , M. S. Gilmore, , and R. Davies-Jones, 2006: A preliminary survey of rear-flank descending reflectivity cores in supercell storms. Wea. Forecasting, 21 , 923938.

    • Search Google Scholar
    • Export Citation
  • Rotunno, R., , and J. B. Klemp, 1982: The influence of the shear-induced pressure gradient on thunderstorm motion. Mon. Wea. Rev., 110 , 136151.

    • Search Google Scholar
    • Export Citation
  • Rotunno, R., , and J. B. Klemp, 1985: On the rotation and propagation of numerically simulated supercell thunderstorms. J. Atmos. Sci., 42 , 271292.

    • Search Google Scholar
    • Export Citation
  • Segami, A., , K. Kurihara, , H. Nakamura, , M. Ueno, , I. Takano, , and Y. Tatsumi, 1989: Operational mesoscale weather prediction with the Japan Spectral Model. J. Meteor. Soc. Japan, 67 , 907923.

    • Search Google Scholar
    • Export Citation
  • Singh, R., 1981: On the occurrence of tornadoes and their distribution in India. Mausam, 32 , 307314.

  • Takeda, T., , and H. Imai, 1976: On the behavior of long-lasting cellular echoes. J. Meteor. Soc. Japan, 54 , 399406.

  • Teng, J-H., , C-S. Chen, , T-C. C. Wang, , and Y-L. Chen, 2000: Orographic effects on a squall line system over Taiwan. Mon. Wea. Rev., 128 , 11231138.

    • Search Google Scholar
    • Export Citation
  • Tessendorf, S. A., , L. J. Miller, , K. C. Wiens, , and S. A. Rutledge, 2005: The 29 June 2000 supercell observed during STEPS. Part I: Kinematics and microphysics. J. Atmos. Sci., 62 , 41274150.

    • Search Google Scholar
    • Export Citation
  • Thompson, R. L., , R. Edwards, , J. A. Hart, , K. L. Elmore, , and P. Markowski, 2003: Close proximity soundings within supercell environments obtained from the Rapid Update Cycle. Wea. Forecasting, 18 , 12431261.

    • Search Google Scholar
    • Export Citation
  • Thompson, R. L., , C. M. Mead, , and R. Edwards, 2007: Effective storm-relative helicity and bulk shear in supercell thunderstorm environments. Wea. Forecasting, 22 , 102115.

    • Search Google Scholar
    • Export Citation
  • Tsuboki, K., , and A. Sakakibara, 2002: Large-scale parallel computing of cloud resolving storm simulator. High Performance Computing, H. P. Zima et al., Eds., Springer, 243–259.

    • Search Google Scholar
    • Export Citation
  • Tsuyuki, T., , and T. Fujita, 2002: Outline of the Operational Numerical Weather Prediction at the Japanese Meteorological Agency. JMA, 157 pp.

    • Search Google Scholar
    • Export Citation
  • Vasiloff, S. V., , E. A. Brandes, , R. P. Davies-Jones, , and P. S. Ray, 1986: An investigation of the transition from multicell to supercell storms. J. Climate Appl. Meteor., 25 , 10221036.

    • Search Google Scholar
    • Export Citation
  • Wakimoto, R. M., , H. Cai, , and H. V. Murphey, 2004: The Superior, Nebraska, supercell during BAMEX. Bull. Amer. Meteor. Soc., 85 , 10951106.

    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., , and J. B. Klemp, 1984: The structure and classification of numerically simulated convective storms in directionally varying wind shears. Mon. Wea. Rev., 112 , 24792498.

    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., , and J. B. Klemp, 1986: Characteristics of isolated convective storms. Mesoscale Meteorology and Forecasting, P. S. Ray, Ed., Amer. Meteor. Soc., 331–358.

    • Search Google Scholar
    • Export Citation
  • Wilhelmson, R. B., , and J. B. Klemp, 1981: A three-dimensional numerical simulation of splitting severe storms on 3 April 1964. J. Atmos. Sci., 38 , 15811600.

    • Search Google Scholar
    • Export Citation
  • Wilhelmson, R. B., , and L. J. Wicker, 2001: Numerical modeling of severe local storms. Severe Convective Storms, Meteor. Monogr., No. 28, Amer. Meteor. Soc., 123–166.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 22 22 4
PDF Downloads 16 16 6

Wintertime Supercell Thunderstorms in a Subtropical Environment: A Diagnostic Study

View More View Less
  • 1 Department of Earth Sciences, National Taiwan Normal University, Taipei, Taiwan
  • | 2 Department of Atmospheric Sciences, National Taiwan University, Taipei, Taiwan
  • | 3 Meteorological Center, Civil Aeronautical Administration, Ministry of Transportation and Communications, Taipei, Taiwan
© Get Permissions
Restricted access

Abstract

The present study documents the environment, initiation, and evolution of three isolated supercell storms on 19 December 2002, as the first case near Taiwan reported in the literature, mainly using radar data and manual and gridded analyses. In a subtropical environment, the supercells occurred behind a winter cold front that provided a large west-southwesterly vertical wind shear of 6.4 × 10−3 s−1 at 0–3 km. This combined with weak-to-moderate instability (CAPE = 887 J kg−1) above the shallow surface cold air to yield a favorable environment for supercells. An approaching upper-level jet (ULJ) at 200 hPa also provided strong shear through deep layers farther aloft. Prior to storm initiation, significant daytime solar heating occurred over the mountain slopes along the coast of southeastern China, leading to development of local circulation and onshore/upslope winds, resulting in convergence and uplifting. Three storms were initiated about 80 km inland around 1400 LST near the peaks of local terrain with a northeast–southwest alignment. After formation, the three storms evolved into isolated supercells and each experienced multiple splits. The right-moving storms were usually stronger than left-moving ones and traveled eastward rapidly at about 18 m s−1 across the Taiwan Strait. The storms reached their maximum strength over the strait where low-level shear intensified during the day due to cold air surge. The northern storm also registered a peak reflectivity of 72 dBZ, the strongest ever recorded by any radar in Taiwan. Eventually, the three supercell storms made landfall over Taiwan, producing swaths of rain, hail, and property damages. Before they diminished after midnight, each of the three storms had lasted for about 10 h and propagated for over 550 km.

Corresponding author address: Prof. Chung-Chieh Wang, Department of Earth Sciences, National Taiwan Normal University, 88, Sec. 4, Ting-Chou Rd., Taipei, 11677 Taiwan. Email: cwang716@ms41.hinet.net

Abstract

The present study documents the environment, initiation, and evolution of three isolated supercell storms on 19 December 2002, as the first case near Taiwan reported in the literature, mainly using radar data and manual and gridded analyses. In a subtropical environment, the supercells occurred behind a winter cold front that provided a large west-southwesterly vertical wind shear of 6.4 × 10−3 s−1 at 0–3 km. This combined with weak-to-moderate instability (CAPE = 887 J kg−1) above the shallow surface cold air to yield a favorable environment for supercells. An approaching upper-level jet (ULJ) at 200 hPa also provided strong shear through deep layers farther aloft. Prior to storm initiation, significant daytime solar heating occurred over the mountain slopes along the coast of southeastern China, leading to development of local circulation and onshore/upslope winds, resulting in convergence and uplifting. Three storms were initiated about 80 km inland around 1400 LST near the peaks of local terrain with a northeast–southwest alignment. After formation, the three storms evolved into isolated supercells and each experienced multiple splits. The right-moving storms were usually stronger than left-moving ones and traveled eastward rapidly at about 18 m s−1 across the Taiwan Strait. The storms reached their maximum strength over the strait where low-level shear intensified during the day due to cold air surge. The northern storm also registered a peak reflectivity of 72 dBZ, the strongest ever recorded by any radar in Taiwan. Eventually, the three supercell storms made landfall over Taiwan, producing swaths of rain, hail, and property damages. Before they diminished after midnight, each of the three storms had lasted for about 10 h and propagated for over 550 km.

Corresponding author address: Prof. Chung-Chieh Wang, Department of Earth Sciences, National Taiwan Normal University, 88, Sec. 4, Ting-Chou Rd., Taipei, 11677 Taiwan. Email: cwang716@ms41.hinet.net

Save