• Baysal, C., , H. Meirovitch, , and I. M. Navon, 1999: Performance of efficient minimization algorithms as applied to models of peptides and proteins. J. Comput. Chem., 20 , 354364.

    • Search Google Scholar
    • Export Citation
  • Bell, B. M., 1994: The iterated Kalman smoother as a Gauss–Newton method. SIAM J. Optimiz., 4 , 626636.

  • Bennett, A. F., 1992: Inverse Methods in Physical Oceanography. Cambridge University Press, 346 pp.

  • Bennett, A. F., 2002: Inverse Modeling of the Ocean and Atmosphere. Cambridge University Press, 234 pp.

  • Bennett, A. F., , and M. A. Thorburn, 1992: The generalized inverse of a nonlinear quasigeostrophic ocean circulation model. J. Phys. Oceanogr., 22 , 213230.

    • Search Google Scholar
    • Export Citation
  • Broyden, C. G., 1970: The convergence of a class of double-rank minimization algorithms. J. Inst. Math. Appl., 6 , 7690.

  • Bryson, A. E., , and Y-C. Ho, 1975: Applied Optimal Control: Optimization, Estimation and Control. Tailor & Francis, 481 pp.

  • Byrd, R. H., , J. Nocedal, , and B. Schnabel, 1994: Representation of quasi-Newton matrices and their use in limited memory methods. Math. Prog., 63 , 129156.

    • Search Google Scholar
    • Export Citation
  • Campbell, S. L., , and C. D. Meyer, 1979: Generalized Inverses of Linear Transformations. Pitman, 272 pp.

  • Chua, B. S., , and A. F. Bennett, 2001: An inverse ocean modeling system. Ocean Modell., 3 , 137165.

  • Cohn, S. E., , A. da Silva, , J. Guo, , M. Sienkiewicz, , and D. Lamich, 1998: Assessing the effects of data selection with the DAO physical-space statistical analysis system. Mon. Wea. Rev., 126 , 29132926.

    • Search Google Scholar
    • Export Citation
  • Courtier, P., 1997: Dual formulation of four-dimensional variational assimilation. Quart. J. Roy. Meteor. Soc., 123 , 24492461.

  • Courtier, P., , J-N. Thepaut, , and A. Hollingsworth, 1994: A strategy for operational implementation of 4D-VAR using an incremental approach. Quart. J. Roy. Meteor. Soc., 120 , 13671388.

    • Search Google Scholar
    • Export Citation
  • Dee, D., 2005: Bias and data assimilation. Quart. J. Roy. Meteor. Soc., 131 , 33233343.

  • Derber, J., 1989: A variational continous assimilation technique. Mon. Wea. Rev., 117 , 24372446.

  • Di Lorenzo, E., , A. M. Moore, , H. G. Arango, , B. D. Cornuelle, , A. J. Miller, , B. Powell, , B. S. Chua, , and A. F. Bennett, 2007: Weak and strong constraint data assimilation in the inverse Regional Ocean Modelling System (ROMS): Development and application for a baroclinic coastal upwelling. Ocean Modell., 16 , 160187.

    • Search Google Scholar
    • Export Citation
  • Dobricic, S., , and N. Pinardi, 2008: An oceanographic three-dimensional variational data assimilation scheme. Ocean Modell., 22 , 89105.

    • Search Google Scholar
    • Export Citation
  • Dobricic, S., , N. Pinardi, , M. Adani, , A. Bonazzi, , C. Fratianni, , and M. Tonani, 2005: Mediterranean Forecasting System: An improved assimilation scheme for sea-level anomaly and its validation. Quart. J. Roy. Meteor. Soc., 131 , 36273642.

    • Search Google Scholar
    • Export Citation
  • Dobricic, S., , N. Pinardi, , M. Adani, , M. Tonani, , C. Fratianni, , A. Bonazzi, , and V. Fernandez, 2007: Daily oceanographic analyses by the Mediterranean basin scale assimilation system. Ocean Sci., 3 , 149157.

    • Search Google Scholar
    • Export Citation
  • Egbert, G. D., , A. F. Bennett, , and M. G. G. Foreman, 1994: TOPEX/Poseidon tides estimated using a global inverse model. J. Geophys. Res., 99 , 2482124852.

    • Search Google Scholar
    • Export Citation
  • Ehrendorfer, M., , and J. J. Tribbia, 1997: Optimal prediction of forecast error covariances through singular vectors. J. Atmos. Sci., 54 , 286313.

    • Search Google Scholar
    • Export Citation
  • Fisher, M., , and P. Courtier, 1995: Estimating the covariance matrices of analysis and forecast error in variational data assimilation. ECMWF Research Department Tech. Memo. 220, 26 pp. [Available from the European Centre for Medium-Range Weather Forecasts, Shinfield Park, Reading, Berkshire RG2 9AX, United Kingdom.].

  • Fisher, M., , M. Leutbecher, , and G. A. Kelly, 2005: On the equivalence between Kalman smoothing and weak-constraint four dimensional variational data assimilation. Quart. J. Roy. Meteor. Soc., 131 , 32353246.

    • Search Google Scholar
    • Export Citation
  • Gauthier, P., 1992: Chaos and quadric-dimensional data assimilation: A study based on the Lorenz model. Tellus, 44A , 217.

  • Gilbert, J. C., , and C. Lemarechal, 1989: Some numerical experiments with variable storage quasi-Newton algorithms. Math. Program., 45 , 407436.

    • Search Google Scholar
    • Export Citation
  • Golub, G. H., , and C. van Loan, 1996: Matrix Computations. Johns Hopkins University Press, 694 pp.

  • Jazwinski, A. H., 1970: Stochastic Processes and Filtering Theory. Academic Press, 376 pp.

  • Kalman, R. E., 1960: A new approach to linear filtering and prediction problems. J. Basic Eng., 82 , 3544.

  • Le Dimet, F-X., , and O. Talagrand, 1986: Variational algorithms for analysis and assimilation of meteorological observations. Tellus, 38 , 97110.

    • Search Google Scholar
    • Export Citation
  • Lehoucq, R. B., , D. C. Sorensen, , and C. Yang, 1997: ARPACK users guide: Solution of large scale eigenvalue problems by implicitly restarted Arnoldi methods. Computational and Applied Mathematics, Rice University, Houston, TX. [Available online at http://www.caam.rice.edu/software/ARPACK/.].

  • Madec, G., , P. Delecluse, , M. Imbard, , and C. Lévy, 1998: OPA 8.1 ocean general circulation model reference manual. Note du pole de modélisation, Institut Pierre-Simon Laplace, Paris, France, No. 11, 91 pp.

  • Ngnepieba, P., , and M. Y. Hussaini, 2007: An efficient sampling method for stochastic inverse problems. Comput. Optim. Appl., 37 , 121138.

    • Search Google Scholar
    • Export Citation
  • Nocedal, J., 1980: Updating quasi-Newton matrices with limited storage. Math. Comput. Amer. Math. Soc., 35 , 773782.

  • Nocedal, J., 1992: Theory of algorithms for unconstrained optimization. Acta Numer., 1 , 199242.

  • Rabier, F., 2005: Overview of global data assimilation developments in numerical weather-prediction centres. Quart. J. Roy. Meteor. Soc., 131 , 32153234.

    • Search Google Scholar
    • Export Citation
  • Rabier, F., , and P. Courtier, 1992: Four-dimensional assimilation in the presence of baroclinic instability. Quart. J. Roy. Meteor. Soc., 118 , 649672.

    • Search Google Scholar
    • Export Citation
  • Rauch, H. E., , F. Tung, , and C. T. Striebel, 1965: Maximum likelihood estimates of linear dynamic systems. AIAA J., 3 , 14451450.

  • Stammer, D., and Coauthors, 2002: Global ocean circulation during 1992-1997, estimated from ocean observations and a general circulation model. J. Geophys. Res., 107 .3118, doi:10.1029/2001JC000888.

    • Search Google Scholar
    • Export Citation
  • Stigler, S. M., 1986: The History of Statistics: The Measurement of Uncertainty before 1900. Harvard University Press, 410 pp.

  • Swerling, P., 1959: First order error propagation in a stagewise smoothing procedure for satellite observations. J. Astron. Sci., 6 , 4652.

    • Search Google Scholar
    • Export Citation
  • Tarantola, A., 2005: Inverse Problem Theory and Methods for Model Parameter Estimation. SIAM, 342 pp.

  • Tonani, M., , N. Pinardi, , S. Dobricic, , M. Adani, , and F. Marzocchi, 2008: A high resolution free surface general circulation model of the Mediterranean Sea. Ocean Sci., 4 , 114.

    • Search Google Scholar
    • Export Citation
  • Tremolet, Y., 2006: Accounting for an imperfect model in 4D-Var. Quart. J. Roy. Meteor. Soc., 132 , 24832504.

  • Tremolet, Y., 2007: Model-error estimation in 4D-Var. Quart. J. Roy. Meteor. Soc., 133 , 12671280.

  • Versee, F., , D. Auroux, , and M. Fisher, 2000: Limited-memory BFGS diagonal preconditioners for a data assimilation problem in meteorology. Optim. Eng., 1 , 323339.

    • Search Google Scholar
    • Export Citation
  • Vukicevic, T., , and D. Posselt, 2008: Analysis of the impact of model nonlinearities in inverse problem solving. J. Atmos. Sci., 65 , 28032823.

    • Search Google Scholar
    • Export Citation
  • Weaver, A. T., , J. Vialard, , and D. L. T. Anderson, 2003: Three- and four-dimensional variational assimilation with a general circulation model for the tropical Pacific Ocean. Part I: Formulation, internal diagnostics, and consistency checks. Mon. Wea. Rev., 131 , 13601378.

    • Search Google Scholar
    • Export Citation
  • Wunsch, C., , and P. Heimbach, 2007: Practical global oceanic state estimation. Physica D, 203 , 198207.

  • Xu, L., , and R. Daley, 2000: Towards a true 4-dimensional data assimilation algorithm: Application of a cycling representer algorithm to a simple transport problem. Tellus, 52A , 109128.

    • Search Google Scholar
    • Export Citation
  • Xu, L., , and R. Daley, 2002: Data assimilation with a barotropically unstable shallow water system using representer algorithms. Tellus, 54A , 125137.

    • Search Google Scholar
    • Export Citation
  • Xu, L., , T. Rosmond, , J. Goerss, , and B. Chua, 2007: Toward a weak constraint operational 4D-Var system: Application to the Burgers’ equation. Meteor. Z., 16 , 741753.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 14 14 3
PDF Downloads 3 3 0

A Sequential Variational Algorithm for Data Assimilation in Oceanography and Meteorology

View More View Less
  • 1 Centro Euro-Mediterraneo per i Cambiamenti Climatici, Bologna, Italy
© Get Permissions
Restricted access

Abstract

This study theoretically establishes a sequential variational (SVAR) method for the data assimilation in oceanography and meteorology defined on the model space. Requiring a significantly smaller amount of computer memory, theoretically SVAR gives the same optimal model state estimate as the four-dimensional variational data assimilation method. Its computational cost is similar to that of the four-dimensional variational data assimilation and representer methods. In addition to the optimal state estimates, SVAR computes error covariances at the end of the assimilation window. These advantageous properties of the new algorithm are obtained by combining the sequential methodology with suitable definitions of several new l2 norms, which implicitly provide required estimates.

Corresponding author address: Srdjan Dobricic, Centro Euro-Mediterraneo per i Cambiamenti Climatici, Via Aldo Moro 44, 40139 Bologna, Italy. Email: dobricic@bo.ingv.it

Abstract

This study theoretically establishes a sequential variational (SVAR) method for the data assimilation in oceanography and meteorology defined on the model space. Requiring a significantly smaller amount of computer memory, theoretically SVAR gives the same optimal model state estimate as the four-dimensional variational data assimilation method. Its computational cost is similar to that of the four-dimensional variational data assimilation and representer methods. In addition to the optimal state estimates, SVAR computes error covariances at the end of the assimilation window. These advantageous properties of the new algorithm are obtained by combining the sequential methodology with suitable definitions of several new l2 norms, which implicitly provide required estimates.

Corresponding author address: Srdjan Dobricic, Centro Euro-Mediterraneo per i Cambiamenti Climatici, Via Aldo Moro 44, 40139 Bologna, Italy. Email: dobricic@bo.ingv.it

Save