• Adams, D. K., , and A. Comrie, 1997: The North American Monsoon. Bull. Amer. Meteor. Soc., 78 , 21972213.

  • Adams, D. K., , and N. O. Rennó, 2003: Remarks on Arakawa–Schubert’s quasi-equilibrium theory. J. Atmos. Sci., 60 , 178181.

  • Adang, T. C., , and R. L. Gall, 1989: Structure and dynamics of the Arizona monsoon boundary. Mon. Wea. Rev., 117 , 14231437.

  • Bright, D., , and S. Mullen, 2002: The sensitivity of the numerical simulation of the Southwest monsoon boundary layer to the choice of PBL turbulence parameterization in MM5. Wea. Forecasting, 17 , 99114.

    • Search Google Scholar
    • Export Citation
  • Chaboureau, J., , F. Guichard, , J. Redelsperger, , and J. Lafore, 2004: The role of stability and moisture in the diurnal cycle of convection over land. Quart. J. Roy. Meteor. Soc., 130 , 31053117.

    • Search Google Scholar
    • Export Citation
  • Colby, F. P., 1984: Convective inhibition as a predictor of convection during AVE-SESAME II. Mon. Wea. Rev., 112 , 22402252.

  • Collier, J., , and J. Zhang, 2006: Simulation of the North American Monsoon by the NCAR CCM3 and its sensitivity to convection parameterization. J. Climate, 19 , 28512866.

    • Search Google Scholar
    • Export Citation
  • Craven, J., , R. Jewell, , and H. Brook, 2002: Comparison between observed convective cloud-base heights and lifting condensation level for two different lifted parcels. Wea. Forecasting, 17 , 885890.

    • Search Google Scholar
    • Export Citation
  • Damiani, R., and Coauthors, 2008: The cumulus, photogrammetric, in situ, and doppler observations experiment of 2006. Bull. Amer. Meteor. Soc., 89 , 5773.

    • Search Google Scholar
    • Export Citation
  • Donner, L. J., , and V. T. Phillips, 2003: Boundary layer control on convective available potential energy: Implications for cumulus parameterization. J. Geophys. Res., 108 .4701, doi:10.1029/2003JD003773.

    • Search Google Scholar
    • Export Citation
  • Doswell, C., , and E. Rasmussen, 1994: The effect of neglecting the virtual temperature correction on CAPE calculations. Wea. Forecasting, 9 , 625629.

    • Search Google Scholar
    • Export Citation
  • Douglas, M. W., , R. A. Maddox, , K. Howard, , and S. Reyes, 1993: The Mexican Monsoon. J. Climate, 6 , 16651677.

  • Eltahir, A. B., , and J. S. Pal, 1996: Relationship between surface conditions and subsequent rainfall in convective storms. J. Geophys. Res., 101 , 2623726245.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1994: Atmospheric Convection. Oxford University Press, 592 pp.

  • Frank, W. M., 1980: Modulations of the net tropospheric temperature during GATE. J. Atmos. Sci., 37 , 10561064.

  • Fuller, R. D., , and D. J. Stensrud, 2000: The relationship between tropical easterly waves and surges over the Gulf of California during the North American Monsoon. Mon. Wea. Rev., 128 , 29832989.

    • Search Google Scholar
    • Export Citation
  • Gettelman, A., , D. Seidel, , M. Wheeler, , and R. Ross, 2002: Multidecadal trends in tropical convective available potential energy. J. Geophys. Res., 107 , 46064614.

    • Search Google Scholar
    • Export Citation
  • Gochis, D. J., , W. J. Shuttleworth, , and Z-L. Yang, 2002: Sensitivity of the modeled North American monsoon regional climate to convective parameterization. Mon. Wea. Rev., 130 , 12821298.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., and Coauthors, 2006: Daytime convective development over land: A model intercomparison based on LBA observations. Quart. J. Roy. Meteor. Soc., 132 , 317344.

    • Search Google Scholar
    • Export Citation
  • Higgen, R. W., , J. Petch, , J. Redelsperger, , P. Bechtold, , and J. Chaboureau, 2006: The North American Monsoon Experiment (NAME) 2004 field campaign and modeling strategy. Bull. Amer. Meteor. Soc., 87 , 7994.

    • Search Google Scholar
    • Export Citation
  • Maddox, R., , D. McCollum, , and K. Howard, 1995: Large-scale patterns associated with severe summertime thunderstorm over central Arizona. Wea. Forecasting, 10 , 763778.

    • Search Google Scholar
    • Export Citation
  • McBride, J., , and W. Frank, 1999: Relationships between stability and monsoon convection. J. Atmos. Sci., 56 , 2436.

  • Moncrieff, M., , and M. Miller, 1976: The dynamics and simulation of tropical cumulonimbus and squall lines. Quart. J. Roy. Meteor. Soc., 102 , 373394.

    • Search Google Scholar
    • Export Citation
  • Peppler, R., , and P. Lamb, 1989: Tropospheric static stability and North American growing season rainfall. Mon. Wea. Rev., 117 , 11561180.

    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., 1995: Regulation of convection over the west Pacific warm pool. J. Atmos. Sci., 52 , 39453959.

  • Raymond, D. J., , and M. H. Wilkening, 1980: Mountain induced convection under fair weather conditions. J. Atmos. Sci., 37 , 26932706.

  • Raymond, D. J., , and A. M. Blyth, 1989: Precipitation development in a New Mexico thunderstorm. Quart. J. Roy. Meteor. Soc., 115 , 13971423.

    • Search Google Scholar
    • Export Citation
  • Rennó, N., , and E. Williams, 1995: Quasi-Lagrangian measurements in convective boundary layer plumes and their implications for the calculations of CAPE. Mon. Wea. Rev., 123 , 27332742.

    • Search Google Scholar
    • Export Citation
  • Rennó, N., , and A. Ingersoll, 1996: Natural convection as a heat engine: A theory for CAPE. J. Atmos. Sci., 53 , 572585.

  • Rickenbach, T. M., 2004: Nocturnal cloud systems and the diurnal variation of clouds and rainfall in southwestern Amazonia. Mon. Wea. Rev., 132 , 12011219.

    • Search Google Scholar
    • Export Citation
  • Sherwood, S., 1999: Convective precursors and predictability in the tropical Western Pacific. Mon. Wea. Rev., 127 , 29772991.

  • Smith, W., , and R. Gall, 1989: Tropical squall lines of the Arizona monsoon. Mon. Wea. Rev., 117 , 15531569.

  • Sobel, A. H., , S. E. Yuter, , C. S. Bretherton, , and G. N. Kiladis, 2004: Large-scale meteorology and deep convection during TRMM KWAJEX. Mon. Wea. Rev., 132 , 422444.

    • Search Google Scholar
    • Export Citation
  • Tompkins, A., 2001: Organization of tropical convection in low vertical wind shears: The role of water vapor. J. Atmos. Sci., 58 , 529545.

    • Search Google Scholar
    • Export Citation
  • Wallace, C., , B. Maddox, , and K. Howard, 1999: Summertime convective storm environments in central Arizona: Local observations. Wea. Forecasting, 14 , 9941006.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M., , and G. N. Kiladis, 1999: Convectively coupled equatorial waves: Analysis of clouds and temperature in the wavenumber–frequency domain. J. Atmos. Sci., 56 , 374399.

    • Search Google Scholar
    • Export Citation
  • Williams, E., 1991: Comments on “Thunderstorms above frontal surfaces in environments with positive CAPE. Part I: A climatology”. Mon. Wea. Rev., 119 , 25112513.

    • Search Google Scholar
    • Export Citation
  • Williams, E., , and N. Rennó, 1993: An analysis of the conditional instability of the tropical atmosphere. Mon. Wea. Rev., 121 , 2136.

  • Williams, E., , S. Rutledge, , S. Geotis, , N. Rennó, , E. Rasmussen, , and T. Rickenbach, 1992: A radar and electrical study of tropical “hot towers”. J. Atmos. Sci., 49 , 13861395.

    • Search Google Scholar
    • Export Citation
  • Williams, E., and Coauthors, 2002: Contrasting convective regimes over the Amazon: Implications for cloud electrification. J. Geophys. Res., 107 , 80828101.

    • Search Google Scholar
    • Export Citation
  • Xie, S., , and M. Zhang, 2000: Impact of the convective triggering function on single-column model simulations. J. Geophys. Res., 105 , 1498314996.

    • Search Google Scholar
    • Export Citation
  • Xu, K., , and K. Emanuel, 1989: Is the tropical atmosphere conditionally unstable? Mon. Wea. Rev., 117 , 14711479.

  • Yano, J., , J. Chaboureau, , and F. Guichard, 2005: A generalization of CAPE into potential-energy convertibility. Quart. J. Roy. Meteor. Soc., 131 , 861875.

    • Search Google Scholar
    • Export Citation
  • Ye, B., , A. Genio, , and K. Lo, 1998: CAPE variations in the current climate and in a climate change. J. Climate, 11 , 19972015.

  • Zawadzki, I., , E. Torlaschi, , and R. Sauvageau, 1981: The relationship between mesoscale thermodynamic variables and convective precipitation. J. Atmos. Sci., 38 , 15351540.

    • Search Google Scholar
    • Export Citation
  • Zehnder, J., , L. Zhang, , D. Hansford, , A. Radzan, , N. Selover, , and C. Brown, 2006: Using digital cloud photogrammetry to characterize the onset and transition from shallow to deep convection over orography. Mon. Wea. Rev., 134 , 25272546.

    • Search Google Scholar
    • Export Citation
  • Zhang, G., 2002: Convective quasi-equilibrium in midlatitude continental environment and its effect on convective parameterization. J. Geophys. Res., 107 .4220, doi:10.1029/2001JD001005.

    • Search Google Scholar
    • Export Citation
  • Zhang, G., , and N. McFarlane, 1995: Sensitivity of climate simulations to the parameterization of cumulus convection in the Canadian Climate Centre general circulation model. Atmos.–Ocean, 33 , 407446.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 87 87 17
PDF Downloads 79 79 21

CAPE and Convective Events in the Southwest during the North American Monsoon

View More View Less
  • 1 Programa de Clima e Ambiente, Instituto Nacional de Pesquisas da Amazônia, and Universidade do Estado do Amazonas, Manaus, Amazonas, Brazil
  • | 2 Departamento de Ciências Atmosféricas, Universidade Federal de Campina Grande, Campina Grande, Paraíba, Brazil
© Get Permissions
Restricted access

Abstract

The relationship between atmospheric stability, measured as CAPE, and deep precipitating convection has been widely studied but is not definitive. In the maritime tropics, CAPE and precipitation are usually inversely correlated. In continental convection (i.e., midlatitude and tropical), no consistent relationship has been found. In this study of the semiarid Southwest, a moderate positive correlation exists, approaching 0.6. Correlations based on radiosonde data are found to be sensitive to the parcel level of origin. The strongest correlations are found by modifying the preconvective morning sounding with the maximum reported surface temperature, assuming well-mixed adiabatic layers to the level of free convection with pseudoadiabatic ascent. These results show that the upper bounds on parcel instability correlate best with precipitation. Furthermore, the CAPE–precipitation relationship is argued to depend on the convective regime being considered. The North American monsoon convective regime requires essentially only moisture advection interacting with the strong surface sensible heating over complex topography. Elimination of strong convective inhibition through intense surface sensible heating in the presence of sufficient water vapor leads to the positive CAPE–precipitation relationship on diurnal time scales. These results are discussed in light of contradictory results from other continental and maritime regions, which demonstrate negative correlations.

Corresponding author address: David K. Adams, C.E.S.T.U., Universidade do Estado do Amazonas, Av. Djalma Batista, 3578, Flores, CEP 69050-030 Manaus, Amazonas, Brazil. Email: dave.k.adams@gmail.com

Abstract

The relationship between atmospheric stability, measured as CAPE, and deep precipitating convection has been widely studied but is not definitive. In the maritime tropics, CAPE and precipitation are usually inversely correlated. In continental convection (i.e., midlatitude and tropical), no consistent relationship has been found. In this study of the semiarid Southwest, a moderate positive correlation exists, approaching 0.6. Correlations based on radiosonde data are found to be sensitive to the parcel level of origin. The strongest correlations are found by modifying the preconvective morning sounding with the maximum reported surface temperature, assuming well-mixed adiabatic layers to the level of free convection with pseudoadiabatic ascent. These results show that the upper bounds on parcel instability correlate best with precipitation. Furthermore, the CAPE–precipitation relationship is argued to depend on the convective regime being considered. The North American monsoon convective regime requires essentially only moisture advection interacting with the strong surface sensible heating over complex topography. Elimination of strong convective inhibition through intense surface sensible heating in the presence of sufficient water vapor leads to the positive CAPE–precipitation relationship on diurnal time scales. These results are discussed in light of contradictory results from other continental and maritime regions, which demonstrate negative correlations.

Corresponding author address: David K. Adams, C.E.S.T.U., Universidade do Estado do Amazonas, Av. Djalma Batista, 3578, Flores, CEP 69050-030 Manaus, Amazonas, Brazil. Email: dave.k.adams@gmail.com

Save