• Allaart, M. A. F., , H. Kelder, , and L. C. Heijboer, 1993: On the relation between ozone and potential vorticity. Geophys. Res. Lett., 20 , 811814.

    • Search Google Scholar
    • Export Citation
  • Allen, D. R., , and N. Nakamura, 2002: Dynamical reconstruction of the record low column ozone over Europe on 30 November 1999. Geophys. Res. Lett., 29 .1362, doi:10.1029/2002GL014935.

    • Search Google Scholar
    • Export Citation
  • Barsby, J., , and R. D. Diab, 1995: Total ozone and synoptic weather relationships over Southern Africa and surrounding oceans. J. Geophys. Res., 100 , 30233032.

    • Search Google Scholar
    • Export Citation
  • Beekman, M., , G. Ancellet, , and G. Mégie, 1994: Climatology of tropospheric ozone in southern Europe and its relation to potential vorticity. J. Geophys. Res., 99 , 1284112853.

    • Search Google Scholar
    • Export Citation
  • Benoit, R., , M. Desgagné, , P. Pellerin, , S. Pellerin, , Y. Chartier, , and S. Desjardins, 1997: The Canadian MC2: A semi-Lagrangian, semi-implicit wideband atmospheric model suited for finescale process studies and simulation. Mon. Wea. Rev., 125 , 23822415.

    • Search Google Scholar
    • Export Citation
  • Black, T. L., 1994: The new NMC mesoscale Eta model: Description and forecast examples. Wea. Forecasting, 9 , 265278.

  • Bluestein, H. B., 1992: Synoptic-Dynamic Meteorology in Midlatitudes. Vol. I, Principles of Kinematics and Dynamics, Oxford University Press, 421 pp.

    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., 1993: Synoptic-Dynamic Meteorology in Midlatitudes. Vol. II, Observations and Theory of Weather Systems, Oxford University Press, 584 pp.

    • Search Google Scholar
    • Export Citation
  • Bosart, L. F., 1990: Degradation of the North American radiosonde network. Wea. Forecasting, 5 , 527528.

  • Bowman, K. P., , and A. J. Krueger, 1985: A global climatology of total ozone from the Nimbus 7 Total Ozone Mapping Spectrometer. J. Geophys. Res., 90 , 79677976.

    • Search Google Scholar
    • Export Citation
  • Brennan, M. J., , and G. M. Lackmann, 2005: The influence of incipient latent heat release on the precipitation distribution of the 24–25 January 2000 U.S. east coast cyclone. Mon. Wea. Rev., 133 , 19131937.

    • Search Google Scholar
    • Export Citation
  • Buehner, M., 2002: Assimilation of ERS-2 scatterometer winds using the Canadian 3D-Var. Atmos.–Ocean, 40 , 361376.

  • Buizza, R., , and P. Chessa, 2002: Prediction of the U.S. storm of 24–26 January 2000 with the ECMWF ensemble prediction system. Mon. Wea. Rev., 130 , 15311551.

    • Search Google Scholar
    • Export Citation
  • Colle, B. A., , K. J. Westrick, , and C. F. Mass, 1999: Evaluation of MM5 and Eta-10 precipitation forecasts over the Pacific Northwest during the cool season. Wea. Forecasting, 14 , 137154.

    • Search Google Scholar
    • Export Citation
  • Côté, J., , S. Gravel, , A. Méthot, , A. Patoine, , M. Roch, , and A. Staniforth, 1998: The operational CMC-MRB Global Environmental Multiscale (GEM) model. Part I: Design considerations and formulation. Mon. Wea. Rev., 126 , 13731395.

    • Search Google Scholar
    • Export Citation
  • Cressman, G., 1959: An operational objective analysis system. Mon. Wea. Rev., 87 , 367374.

  • Danielsen, E. F., 1968: Stratospheric-tropospheric exchange based on radioactivity, ozone and potential vorticity. J. Atmos. Sci., 25 , 502518.

    • Search Google Scholar
    • Export Citation
  • Danielsen, E. F., 1983: Ozone transport. Ozone in the Free Atmosphere, R. C. Whitten and S. S. Prasad, Eds., Van Nostrand Reinhold, 123–160.

    • Search Google Scholar
    • Export Citation
  • Davis, C. A., , and K. A. Emanuel, 1991: Potential vorticity diagnostics of cyclogenesis. Mon. Wea. Rev., 119 , 19291953.

  • Davis, C. A., , S. Low-Nam, , M. A. Shapiro, , X. Zou, , and A. J. Krueger, 1999: Direct retrieval of wind from Total Ozone Mapping Spectrometer (TOMS) data: Examples from FASTEX. Quart. J. Roy. Meteor. Soc., 125 , 33753391.

    • Search Google Scholar
    • Export Citation
  • Demirtas, M., , and A. J. Thorpe, 1999: Sensitivity of short-range weather forecasts to local potential vorticity modifications. Mon. Wea. Rev., 127 , 922939.

    • Search Google Scholar
    • Export Citation
  • Derber, J. C., , and W-S. Wu, 1998: The use of TOVS cloud-cleared radiances in the NCEP SSI analysis system. Mon. Wea. Rev., 126 , 22872299.

    • Search Google Scholar
    • Export Citation
  • Dethof, A., , and E. V. Holm, 2004: Ozone assimilation in the ERA-40 reanalysis project. Quart. J. Roy. Meteor. Soc., 130 , 28512872.

  • Dobson, G. M. B., , and D. N. Harrison, 1926: Measurements of the amount of ozone in the Earth’s atmosphere and its relation to other geophysical conditions. Proc. Roy. Soc. London, A110 , 660693.

    • Search Google Scholar
    • Export Citation
  • Durnford, D., 2007: A procedure to convert total column ozone data to numerical weather prediction model initializing fields, and its validation via simulations of the 24-25 January 2000 East Coast snowstorm. Ph.D. thesis, McGill University, 234 pp.

  • Faccani, C., , R. Ferretti, , and G. Visconti, 2003: High-resolution weather forecasting over complex orography: Sensitivity to the assimilation of conventional data. Mon. Wea. Rev., 131 , 136154.

    • Search Google Scholar
    • Export Citation
  • Fritsch, J. M., , and R. E. Carbone, 2004: Improving quantitative precipitation forecasts in the warm season: A USWRP research and development strategy. Bull. Amer. Meteor. Soc., 85 , 955965.

    • Search Google Scholar
    • Export Citation
  • Geller, M. A., , and S. P. Smyshlyaev, 2002: A model study of total ozone evolution 1979-2000—The role of individual natural and anthropogenic effects. Geophys. Res. Lett., 29 .2048, doi:10.1029/2002GL015689.

    • Search Google Scholar
    • Export Citation
  • Grimit, E. P., , and C. F. Mass, 2002: Initial results of a mesoscale short-range ensemble forecasting system over the Pacific Northwest. Wea. Forecasting, 17 , 192205.

    • Search Google Scholar
    • Export Citation
  • Hastings, K. J., 1997: Probability and Statistics. Addison-Wesley, 644 pp.

  • Hello, G., , and P. Arbogast, 2004: Two different methods to correct the initial conditions applied to the storm of 27 December 1999 over southern France. Meteor. Appl., 11 , 4157.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., , M. E. McIntyre, , and A. W. Robertson, 1985: On the use and significance of isentropic potential vorticity maps. Quart. J. Roy. Meteor. Soc., 111 , 877946.

    • Search Google Scholar
    • Export Citation
  • James, P. M., , and D. Peters, 2002: The Lagrangian structure of ozone mini-holes and potential vorticity anomalies in the Northern Hemisphere. Ann. Geophys., 20 , 835846.

    • Search Google Scholar
    • Export Citation
  • Jang, K-I., , X. Zou, , M. S. F. V. De Pondeca, , M. Shapiro, , C. Davis, , and A. Krueger, 2003: Incorporating TOMS ozone measurements into the prediction of the Washington, D.C., winter storm during 24–25 January 2000. J. Appl. Meteor., 42 , 797812.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., , and J. M. Fritsch, 1990: A one-dimensional entraining/detraining plume model and its application in convective parameterization. J. Atmos. Sci., 47 , 27842802.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77 , 437471.

  • Kleist, D. T., , and M. C. Morgan, 2005: Application of adjoint-derived forecast sensitivities to the 24–25 January 2000 U.S. east coast snowstorm. Mon. Wea. Rev., 133 , 31483175.

    • Search Google Scholar
    • Export Citation
  • Kong, F-Y., , and M. K. Yau, 1997: An explicit approach to microphysics in MC2. Atmos.–Ocean, 35 , 257291.

  • Langland, R. H., , M. A. Shapiro, , and R. Gelaro, 2002: Initial condition sensitivity and error growth in forecasts of the 25 January 2000 east coast snowstorm. Mon. Wea. Rev., 130 , 957974.

    • Search Google Scholar
    • Export Citation
  • Leidner, S. M., , L. Isaksen, , and R. N. Hoffman, 2003: Impact of NSCAT winds on tropical cyclones in the ECMWF 4DVAR assimilation system. Mon. Wea. Rev., 131 , 326.

    • Search Google Scholar
    • Export Citation
  • McPeters, R. D., , P. K. Bhartia, , A. J. Krueger, , and J. R. Herman, 1998: Earth Probe Total Ozone Mapping Spectrometer (TOMS) data products user’s guide. NASA Tech. Publ. 1998-206895, 70 pp.

  • Moninger, W. R., , R. D. Mamrosh, , and P. M. Pauley, 2003: Automated meteorological reports from commercial aircraft. Bull. Amer. Meteor. Soc., 84 , 203216.

    • Search Google Scholar
    • Export Citation
  • NCDC, 2000: Storm Data. Vol. 42, No. 1, 172 pp.

  • Pendelbury, S. F., , N. D. Adams, , T. L. Hart, , and J. Turner, 2003: Numerical weather prediction model performance over high southern latitudes. Mon. Wea. Rev., 131 , 335353.

    • Search Google Scholar
    • Export Citation
  • Peuch, A., , J-N. Thepaut, , and J. Pailleux, 2000: Dynamical impact of total ozone observations in a four-dimensional variational assimilation. Quart. J. Roy. Meteor. Soc., 126 , 16411659.

    • Search Google Scholar
    • Export Citation
  • Rabier, F., , E. Klinker, , P. Courtier, , and A. Hollingsworth, 1996: Sensitivity of forecast errors to initial conditions. Quart. J. Roy. Meteor. Soc., 122 , 121150.

    • Search Google Scholar
    • Export Citation
  • Richard, E., , S. Cosma, , R. Benoit, , P. Binder, , A. Buzzi, , and P. Kaufmann, 2003: Intercomparison of mesoscale meteorological models for precipitation forecasting. Hydrol. Earth Syst. Sci., 7 , 799811.

    • Search Google Scholar
    • Export Citation
  • Riishøjgaard, L. P., 1996: On four-dimensional variational assimilation of ozone data in weather-prediction models. Quart. J. Roy. Meteor. Soc., 122 , 15451571.

    • Search Google Scholar
    • Export Citation
  • Salby, M. L., , and P. F. Callaghan, 1993: Fluctuations of total ozone and their relationship to stratospheric air motions. J. Geophys. Res., 98 , 27152727.

    • Search Google Scholar
    • Export Citation
  • Schoeberl, M. R., , and A. J. Krueger, 1983: Medium scale disturbances in total ozone during Southern Hemisphere summer. Bull. Amer. Meteor. Soc., 64 , 13581365.

    • Search Google Scholar
    • Export Citation
  • Struthers, H., , R. Brugge, , W. A. Lahoz, , A. O’Neill, , and R. Swinbank, 2002: Assimilation of ozone profiles and total column measurements into a global general circulation model. J. Geophys. Res., 107 .4438, doi:10.1029/2001JD000957.

    • Search Google Scholar
    • Export Citation
  • Swarbrick, S. J., 2001: Applying the relationship between potential vorticity fields and water vapour imagery to adjust initial conditions in numerical weather prediction. Meteor. Appl., 8 , 221228.

    • Search Google Scholar
    • Export Citation
  • Uppala, S. M., and Coauthors, 2005: The ERA-40 re-analysis. Quart. J. Roy. Meteor. Soc., 131 , 29613012.

  • Zhang, F., 2005: Dynamics and structure of mesoscale error covariance of a winter cyclone estimated through short-range ensemble forecasts. Mon. Wea. Rev., 133 , 28762893.

    • Search Google Scholar
    • Export Citation
  • Zhang, F., , C. Snyder, , and R. Rotunno, 2002: Mesoscale predictability of the “surprise” snowstorm of 24–25 January 2000. Mon. Wea. Rev., 130 , 16171632.

    • Search Google Scholar
    • Export Citation
  • Zhang, F., , C. Snyder, , and R. Rotunno, 2003: Effects of moist convection on mesoscale predictability. J. Atmos. Sci., 60 , 11731185.

  • Zou, X., , and Y. Wu, 2005: On the relationship between Total Ozone Mapping Spectrometer (TOMS) ozone and hurricanes. J. Geophys. Res., 110 .D06109, doi:10.1029/2004JD005019.

    • Search Google Scholar
    • Export Citation
  • Zupanski, M., , D. Zupanski, , D. F. Parrish, , E. Rogers, , and G. DiMego, 2002: Four-dimensional variational data assimilation for the blizzard of 2000. Mon. Wea. Rev., 130 , 19671988.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 9 9 1
PDF Downloads 4 4 1

The Conversion of Total Column Ozone Data to Numerical Weather Prediction Model Initializing Fields, with Simulations of the 24–25 January 2000 East Coast Snowstorm

View More View Less
  • 1 McGill University, Montreal, Quebec, Canada
© Get Permissions
Restricted access

Abstract

Satellites are uniquely capable of providing uniform data coverage globally. Motivated by such capability, this study builds on a previously described methodology that generates numerical weather prediction (NWP) model initial conditions (ICs) from satellite total column ozone (TCO) data. The methodology is based on three principal steps: 1) conversion of TCO to mean potential vorticity (MPV) via linear regression, 2) conversion of two-dimensional MPV to three-dimensional potential vorticity (PV) via vertical mapping onto average PV profiles, and 3) inversion of the three-dimensional PV field to obtain model-initializing height, temperature, and wind fields in the mid- and upper troposphere. The overall accuracy of the process has been significantly increased through a substantial reworking of the details of this previous version. For instance, in recognition of the fact that TCO ridges tend to be less reliable than troughs, the authors vertically map an MPV field that is a synthesis of ozone-derived MPV troughs and analysis MPV ridges. The vertical mapping procedure itself produces a more physical three-dimensional PV field by eliminating unrealistically strong features at upper levels.

It is found that the ozone-influenced upper-level initializing fields improve the quantitative precipitation forecast (QPF) of the 24–25 January 2000 East Coast snowstorm for two of the three (re)analyses. Furthermore, the best QPF involves ozone-influenced upper-level initializing fields. Its high threat scores reflect a superior placement, amplitude, and structure. This best QPF is apparently superior to a forecast of the same case where TCO data were assimilated using four-dimensional variational data assimilation.

* Current affiliation: Environment Canada, Dorval, Quebec, Canada.

Corresponding author address: Dorothy Durnford, Air Quality Research Division, Environment Canada, 2121 Trans-Canada Highway 424, Dorval, QC H9P 1J3, Canada. Email: Dorothy.Durnford@ec.gc.ca

Abstract

Satellites are uniquely capable of providing uniform data coverage globally. Motivated by such capability, this study builds on a previously described methodology that generates numerical weather prediction (NWP) model initial conditions (ICs) from satellite total column ozone (TCO) data. The methodology is based on three principal steps: 1) conversion of TCO to mean potential vorticity (MPV) via linear regression, 2) conversion of two-dimensional MPV to three-dimensional potential vorticity (PV) via vertical mapping onto average PV profiles, and 3) inversion of the three-dimensional PV field to obtain model-initializing height, temperature, and wind fields in the mid- and upper troposphere. The overall accuracy of the process has been significantly increased through a substantial reworking of the details of this previous version. For instance, in recognition of the fact that TCO ridges tend to be less reliable than troughs, the authors vertically map an MPV field that is a synthesis of ozone-derived MPV troughs and analysis MPV ridges. The vertical mapping procedure itself produces a more physical three-dimensional PV field by eliminating unrealistically strong features at upper levels.

It is found that the ozone-influenced upper-level initializing fields improve the quantitative precipitation forecast (QPF) of the 24–25 January 2000 East Coast snowstorm for two of the three (re)analyses. Furthermore, the best QPF involves ozone-influenced upper-level initializing fields. Its high threat scores reflect a superior placement, amplitude, and structure. This best QPF is apparently superior to a forecast of the same case where TCO data were assimilated using four-dimensional variational data assimilation.

* Current affiliation: Environment Canada, Dorval, Quebec, Canada.

Corresponding author address: Dorothy Durnford, Air Quality Research Division, Environment Canada, 2121 Trans-Canada Highway 424, Dorval, QC H9P 1J3, Canada. Email: Dorothy.Durnford@ec.gc.ca

Save