• Allen, D. R., , S. D. Eckermann, , J. P. McCormack, , L. Coy, , G. L. Manney, , T. F. Hogan, , and Y-J. Kim, 2006: NOGAPS-ALPHA simulations of the 2002 Southern Hemisphere stratospheric major warming. Mon. Wea. Rev., 134 , 498518.

    • Search Google Scholar
    • Export Citation
  • Allen, S. J., , and R. A. Vincent, 1995: Gravity wave activity in the lower atmosphere: Seasonal and latitudinal variations. J. Geophys. Res., 100 , 13271350.

    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., and Coauthors, 2004: The new GFDL global atmosphere and land model AM2–LM2: Evaluation with prescribed SST simulations. J. Climate, 17 , 46414673.

    • Search Google Scholar
    • Export Citation
  • Arakawa, A., , and V. R. Lamb, 1977: Computational design of the basic dynamical processes of the UCLA general circulation model. Methods in Computational Physics: Advances in Research and Applications, J. Chang, Ed., Academic Press, 173–265.

    • Search Google Scholar
    • Export Citation
  • Arakawa, A., , and M. J. Suarez, 1983: Vertical differencing of the primitive equations in sigma coordinates. Mon. Wea. Rev., 111 , 3445.

    • Search Google Scholar
    • Export Citation
  • Arakawa, A., , and C. S. Konor, 1996: Vertical differencing of the primitive equations based on the Charney–Phillips grid in hybrid σp vertical coordinates. Mon. Wea. Rev., 124 , 511528.

    • Search Google Scholar
    • Export Citation
  • Bloom, S., and Coauthors, 2005: Documentation and validation of the Goddard Earth Observing System (GEOS) data assimilation system—version 4. NASA Tech. Memo. NASA/TM-2005-104606, 165 pp.

  • Blum, U., , G. Baumgarten, , A. Schöch, , S. Kirkwood, , B. Naujokat, , and K. H. Fricke, 2006: The atmospheric background situation in northern Scandinavia during January/February 2003 in the context of the MaCWAVE campaign. Ann. Geophys., 24 , 11891197.

    • Search Google Scholar
    • Export Citation
  • Cariolle, D., , and M. Déqué, 1986: Southern hemisphere medium-scale waves and total ozone disturbances in a spectral general circulation model. J. Geophys. Res., 91 , 1082510846.

    • Search Google Scholar
    • Export Citation
  • Charlton, A. J., , and L. M. Polvani, 2007: A new look at stratospheric sudden warmings. Part I: Climatology and modeling benchmarks. J. Climate, 20 , 449469.

    • Search Google Scholar
    • Export Citation
  • COESA, 1976: U.S. Standard Atmosphere, 1976. U.S. Government Printing Office, 227 pp.

  • Collins, W. D., and Coauthors, 2004: Description of the NCAR Community Atmosphere Model (CAM 3.0). NCAR Tech. Note NCAR/TN-464+STR, 214 pp. [Available online at http://www.ccsm.ucar.edu/models/atm-cam/.].

  • Corby, G. A., , A. Gilchrist, , and R. L. Newson, 1972: A general circulation model of the atmosphere suitable for long period integrations. Quart. J. Roy. Meteor. Soc., 98 , 809832.

    • Search Google Scholar
    • Export Citation
  • Déqué, M., , C. Dreveton, , A. Braun, , and D. Cariolle, 1994: The ARPEGE/IFS atmosphere model: A contribution to the French community climate modelling. Climate Dyn., 10 , 249266.

    • Search Google Scholar
    • Export Citation
  • DWD, 2004: Quarterly report of the German NWP-system. Part 2: Description of the German NWP system. Tech. Rep., Deutscher Wetterdienst, 31 pp.

  • Eckermann, S. D., , J. P. McCormack, , L. Coy, , D. Allen, , T. F. Hogan, , Y. J. Kim, , and D. E. Siskind, 2004: NOGAPS-ALPHA: A prototype high-altitude version of the Navy’s global numerical weather prediction model. Preprints. Symp. on the 50th Anniversary of Operational Numerical Weather Prediction; College Park, MD; NCEP and Cosponsors; P2.6. [Available online at http://uap-www.nv/.navy.mil/dynamics/papers/EckermannP2.6-reprint.pdf].

    • Search Google Scholar
    • Export Citation
  • Eckermann, S. D., and Coauthors, 2006: Imaging gravity waves in lower stratospheric AMSU-A radiances. Part 2: Validation case study. Atmos. Chem. Phys., 6 , 33433362.

    • Search Google Scholar
    • Export Citation
  • Eckermann, S. D., , D. Broutman, , M. T. Stollberg, , J. Ma, , J. P. McCormack, , and T. F. Hogan, 2007a: Atmospheric effects of the total solar eclipse of 4 December 2002 simulated with a high-altitude global model. J. Geophys. Res., 112 .D14105, doi:10.1029/2006JD007880.

    • Search Google Scholar
    • Export Citation
  • Eckermann, S. D., , J. Ma, , D. L. Wu, , and D. Broutman, 2007b: A three-dimensional mountain wave imaged in satellite radiance throughout the stratosphere: Evidence of the effects of directional wind shear. Quart. J. Roy. Meteor. Soc., 133 , 19591975.

    • Search Google Scholar
    • Export Citation
  • Eluszkiewicz, J., , R. S. Hemler, , J. D. Mahlman, , L. Bruhwiler, , and L. L. Takacs, 2000: Sensitivity of age-of-air calculations to the choice of advection scheme. J. Atmos. Sci., 57 , 31853201.

    • Search Google Scholar
    • Export Citation
  • Fels, S. B., , J. D. Mahlman, , M. D. Schwarzkopf, , and R. W. Sinclair, 1980: Stratospheric sensitivity to perturbations in ozone and carbon dioxide: Radiative and dynamical response. J. Atmos. Sci., 37 , 22652297.

    • Search Google Scholar
    • Export Citation
  • Fritts, D. C., , and M. J. Alexander, 2003: Gravity wave dynamics and effects in the middle atmosphere. Rev. Geophys., 41 .1003, doi:10.1029/2001RG000106.

    • Search Google Scholar
    • Export Citation
  • Gary, J. M., 1973: Estimate of truncation error in transformed coordinate, primitive equation atmospheric models. J. Atmos. Sci., 30 , 223233.

    • Search Google Scholar
    • Export Citation
  • Giraldo, F. X., , and T. E. Rosmond, 2004: A scalable spectral element Eulerian atmospheric model (SEE-AM) for NWP: Dynamical core tests. Mon. Wea. Rev., 132 , 133153.

    • Search Google Scholar
    • Export Citation
  • Haltiner, G. J., , and R. J. Williams, 1980: Numerical Prediction and Dynamic Meteorology. 2nd ed. Wiley & Sons, 477 pp.

  • Hogan, T. F., , and T. E. Rosmond, 1991: The description of the Navy Operational Global Atmospheric Prediction System’s spectral forecast model. Mon. Wea. Rev., 119 , 17861815.

    • Search Google Scholar
    • Export Citation
  • Hogan, T. F., , T. E. Rosmond, , and R. Gelaro, 1991: The NOGAPS forecast model: A technical description. Naval Oceanographic and Atmospheric Research Laboratory Rep. 13, 219 pp.

  • Hoskins, B. J., , and A. J. Simmons, 1975: A multi-layer spectral model and the semi-implicit method. Quart. J. Roy. Meteor. Soc., 101 , 637655.

    • Search Google Scholar
    • Export Citation
  • Jablonowski, C., , and D. L. Williamson, 2006: A baroclinic instability test case for atmospheric model dynamical cores. Quart. J. Roy. Meteor. Soc., 132 , 29432975.

    • Search Google Scholar
    • Export Citation
  • Kanamitsu, M., , W. Ebisuzaki, , J. Woollen, , S-K. Yang, , J. J. Hnilo, , M. Fiorino, , and G. L. Potter, 2002: NCEP–DOE AMIP II reanalysis (R-2). Bull. Amer. Meteor. Soc., 83 , 16311643.

    • Search Google Scholar
    • Export Citation
  • Kasahara, A., 1974: Various vertical coordinate systems used for numerical weather prediction. Mon. Wea. Rev., 102 , 509522. Corrigendum, 103, 664.

    • Search Google Scholar
    • Export Citation
  • Konor, C. S., , and A. Arakawa, 1997: Design of an atmospheric model based on a generalized vertical coordinate. Mon. Wea. Rev., 125 , 16491673.

    • Search Google Scholar
    • Export Citation
  • Lahoz, W. A., 1999: Predictive skill of the UKMO Unified Model in the lower stratosphere. Quart. J. Roy. Meteor. Soc., 125 , 22052238.

    • Search Google Scholar
    • Export Citation
  • Laprise, R., 1992: The Euler equations of motion with hydrostatic pressure as an independent variable. Mon. Wea. Rev., 120 , 197207.

  • Laprise, R., , and C. Girard, 1990: A spectral general circulation model using a piecewise-constant finite-element representation on a hybrid vertical coordinate system. J. Climate, 3 , 3252.

    • Search Google Scholar
    • Export Citation
  • McCormack, J. P., and Coauthors, 2004: NOGAPS-ALPHA model simulations of stratospheric ozone during the SOLVE2 campaign. Atmos. Chem. Phys., 4 , 24012423.

    • Search Google Scholar
    • Export Citation
  • McCormack, J. P., , S. D. Eckermann, , D. E. Siskind, , and T. J. McGee, 2006: CHEM2D-OPP: A new linearized gas-phase ozone photochemistry parameterization for high-altitude NWP and climate models. Atmos. Chem. Phys., 6 , 49434972.

    • Search Google Scholar
    • Export Citation
  • McFarlane, N. A., , G. J. Boer, , J-P. Blanchet, , and M. Lazare, 1992: The Canadian Climate Centre second-generation general circulation model and its equilibrium climate. J. Climate, 5 , 10131044.

    • Search Google Scholar
    • Export Citation
  • Mintz, Y., 1965: Very long-term global integration of the primitive equations of atmospheric motion: An experiment in climate simulation. Causes of Climatic Change, Meteor. Monogr., No. 30, Amer. Meteor. Soc., 20–36.

    • Search Google Scholar
    • Export Citation
  • Phillips, N. A., 1957: A coordinate system having some special advantages for numerical forecasting. J. Meteor., 14 , 184185.

  • Phillips, N. A., 1974: Application of Arakawa’s energy-conserving layer model to operational numerical weather prediction. National Meteorological Center Office Note 104, 40 pp. [Available online at http://wwwt.emc.ncep.noaa.gov/officenotes/.].

  • Polavarapu, S., , S. Ren, , Y. Rochon, , D. Sankey, , N. Ek, , J. Koshyk, , and D. Tarasick, 2005: Data assimilation with the Canadian middle atmosphere model. Atmos.–Ocean, 43 , 77100.

    • Search Google Scholar
    • Export Citation
  • Robert, A. J., , H. Henderson, , and C. Turnbull, 1972: An implicit time integration scheme for baroclinic models of the atmosphere. Mon. Wea. Rev., 100 , 329335.

    • Search Google Scholar
    • Export Citation
  • Roeckner, E., and Coauthors, 2003: The atmospheric general circulation model ECHAM5. Part I. Model description. Rep. 349, Max Planck Institute for Meteorology, 127 pp.

  • Sangster, W. E., 1960: A method of representing the horizontal pressure force without reduction of station pressures to sea level. J. Meteor., 17 , 166176.

    • Search Google Scholar
    • Export Citation
  • Schlesinger, M. E., , and Y. Mintz, 1979: Numerical simulations of ozone production, transport, and distribution with a global atmospheric general circulation model. J. Atmos. Sci., 36 , 13251361.

    • Search Google Scholar
    • Export Citation
  • Simmons, A. J., , and D. M. Burridge, 1981: An energy and angular momentum conserving vertical finite-difference scheme and hybrid vertical coordinates. Mon. Wea. Rev., 109 , 758766.

    • Search Google Scholar
    • Export Citation
  • Simmons, A. J., , and R. Strüfing, 1981: An energy and angular-momentum conserving finite-difference scheme, hybrid coordinates and medium-range weather prediction. ECMWF Tech. Rep. 28, 68 pp.

  • Simmons, A. J., , and R. Strüfing, 1983: Numerical forecasts of stratospheric warming events using a model with a hybrid vertical coordinate. Quart. J. Roy. Meteor. Soc., 109 , 81111.

    • Search Google Scholar
    • Export Citation
  • Simmons, A. J., , B. J. Hoskins, , and D. M. Burridge, 1978: Stability of the semi-implicit method of time integration. Mon. Wea. Rev., 106 , 405412.

    • Search Google Scholar
    • Export Citation
  • Simmons, A. J., , D. M. Burridge, , M. Jarraud, , C. Girard, , and W. Wergen, 1989: The ECMWF medium-range prediction models: Development of the numerical formulations and the impact of increased resolution. Meteor. Atmos. Phys., 40 , 2860.

    • Search Google Scholar
    • Export Citation
  • Simmons, A. J., , M. Hortal, , G. Kelly, , A. McNally, , A. Untch, , and S. Uppala, 2005: ECMWF analyses and forecasts of stratospheric winter polar vortex breakup: September 2002 in the Southern Hemisphere and related events. J. Atmos. Sci., 62 , 668689.

    • Search Google Scholar
    • Export Citation
  • Smith, S. A., , D. C. Fritts, , and T. E. VanZandt, 1987: Evidence for a saturated spectrum of atmospheric gravity waves. J. Atmos. Sci., 44 , 14041410.

    • Search Google Scholar
    • Export Citation
  • Staniforth, A., , and A. A. White, 2007: Some exact solutions of geophysical fluid-dynamics equations for testing models in spherical and plane geometry. Quart. J. Roy. Meteor. Soc., 133 , 16051614.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., , and D. P. Stepaniak, 2002: A pathological problem with NCEP reanalyses in the stratosphere. J. Climate, 15 , 690695.

    • Search Google Scholar
    • Export Citation
  • Waugh, D. W., , J. M. Sisson, , and D. J. Karoly, 1998: Predictive skill of an NWP system in the southern lower stratosphere. Quart. J. Roy. Meteor. Soc., 124 , 21812200.

    • Search Google Scholar
    • Export Citation
  • Webster, S., , J. Thuburn, , B. Hoskins, , and M. Rodwell, 1999: Further development of a hybrid-isentropic GCM. Quart. J. Roy. Meteor. Soc., 125 , 23052331.

    • Search Google Scholar
    • Export Citation
  • Wood, N., , and A. Staniforth, 2003: The deep-atmosphere Euler equations with a mass-based vertical coordinate. Quart. J. Roy. Meteor. Soc., 129 , 12891300.

    • Search Google Scholar
    • Export Citation
  • Zhu, Z., , J. Thuburn, , B. J. Hoskins, , and P. H. Haynes, 1992: A vertical finite-difference scheme based on a hybrid σθp coordinate. Mon. Wea. Rev., 120 , 851862.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 152 152 35
PDF Downloads 128 128 31

Hybrid σp Coordinate Choices for a Global Model

View More View Less
  • 1 Space Science Division, Naval Research Laboratory, Washington, D.C
© Get Permissions
Restricted access

Abstract

A methodology for choosing a hybrid σp (sigma–pressure) vertical coordinate of the Simmons–Strüfing form for a global model is presented. The method focuses on properties of the vertical derivative of the terrain-following coefficient, which affect the smoothness and shape of layer thickness profiles and determines the coordinate’s monotonicity over variable terrain. The method is applied to characterize and interrelate existing hybrid coordinate choices in NWP and climate models, then to design new coordinates with specific properties. Offline tests indicate that the new coordinates reduce stratospheric errors in models due to vertical truncation effects in the computation of the pressure gradient force over steep terrain. When implemented in a global model, the new coordinates significantly reduce vorticity and divergence errors at all altitudes in idealized simulations. In forecasting experiments with a global model, the new coordinates slightly reduce the stability of the semi-implicit time scheme. Resetting the reference pressure in the scheme to ∼800 hPa solves the problem for every coordinate except the Sangster–Arakawa–Lamb hybrid, which remains intrinsically less stable than the others. Impacts of different coordinates on forecast skill are neutral or weakly positive, with the new hybrid coordinates yielding slight improvements relative to earlier hybrid choices. This essentially neutral impact indirectly endorses the wide variety of hybrid coordinate choices currently used in NWP and climate models, with the proviso that these tests do not address the impact over longer time scales or on data assimilation.

Corresponding author address: Stephen Eckermann, Space Science Division, Code 7646, Naval Research Laboratory, 4555 Overlook Ave. SW, Washington, DC 20375. Email: stephen.eckermann@nrl.navy.mil

Abstract

A methodology for choosing a hybrid σp (sigma–pressure) vertical coordinate of the Simmons–Strüfing form for a global model is presented. The method focuses on properties of the vertical derivative of the terrain-following coefficient, which affect the smoothness and shape of layer thickness profiles and determines the coordinate’s monotonicity over variable terrain. The method is applied to characterize and interrelate existing hybrid coordinate choices in NWP and climate models, then to design new coordinates with specific properties. Offline tests indicate that the new coordinates reduce stratospheric errors in models due to vertical truncation effects in the computation of the pressure gradient force over steep terrain. When implemented in a global model, the new coordinates significantly reduce vorticity and divergence errors at all altitudes in idealized simulations. In forecasting experiments with a global model, the new coordinates slightly reduce the stability of the semi-implicit time scheme. Resetting the reference pressure in the scheme to ∼800 hPa solves the problem for every coordinate except the Sangster–Arakawa–Lamb hybrid, which remains intrinsically less stable than the others. Impacts of different coordinates on forecast skill are neutral or weakly positive, with the new hybrid coordinates yielding slight improvements relative to earlier hybrid choices. This essentially neutral impact indirectly endorses the wide variety of hybrid coordinate choices currently used in NWP and climate models, with the proviso that these tests do not address the impact over longer time scales or on data assimilation.

Corresponding author address: Stephen Eckermann, Space Science Division, Code 7646, Naval Research Laboratory, 4555 Overlook Ave. SW, Washington, DC 20375. Email: stephen.eckermann@nrl.navy.mil

Save