• Arakawa, A., , and W. H. Schubert, 1974: Interaction of a cumulus cloud ensemble with the large-scale environment: Part I. J. Atmos. Sci., 31 , 674701.

    • Search Google Scholar
    • Export Citation
  • Bechtold, P., , J-P. Chaboureau, , A. Beljaars, , A. K. Betts, , M. Köhler, , M. Miller, , and J-L. Redelsperger, 2004: The simulation of the diurnal cycle of convective precipitation over land in a global model. Quart. J. Roy. Meteor. Soc., 130 , 31193137.

    • Search Google Scholar
    • Export Citation
  • Bechtold, P., , M. Köhler, , T. Jung, , F. Doblas-Reyes, , M. Leutbecher, , M. J. Rodwell, , F. Vitart, , and G. Balsamo, 2008: Advances in simulating atmospheric variability with the ECMWF model: From synoptic to decadal time-scales. Quart. J. Roy. Meteor. Soc., 134 , 13371351.

    • Search Google Scholar
    • Export Citation
  • Beesley, J. A., , C. S. Bretherton, , C. Jakob, , E. L. Andreas, , J. M. Intrieri, , and T. A. Uttal, 2000: A comparison of cloud and boundary layer variables in the ECMWF forecast model with observations at Surface Heat Budget of the Arctic Ocean (SHEBA) ice camp. J. Geophys. Res., 105 , 1233712349.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., , and C. Jakob, 2002: Evaluation of the diurnal cycle of precipitation, surface thermodynamics, and surface fluxes in the ECMWF model using LBA data. J. Geophys. Res., 107 .8045, doi:10.1029/2001JD000427.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., , E. Klinker, , A. K. Betts, , and J. A. Coakley, 1995: Comparison of ceilometer, satellite, and synoptic measurements of boundary-layer cloudiness and the ECMWF diagnostic cloud parameterization scheme during ASTEX. J. Atmos. Sci., 52 , 27362751.

    • Search Google Scholar
    • Export Citation
  • Chevallier, F., , and J-J. Morcrette, 2000: Comparison of model fluxes with surface and top-of-the-atmosphere observations. Mon. Wea. Rev., 128 , 38393852.

    • Search Google Scholar
    • Export Citation
  • Chevallier, F., , and P. Bauer, 2003: Model rain and clouds over oceans: Comparison with SSM/I observations. Mon. Wea. Rev., 131 , 12401255.

    • Search Google Scholar
    • Export Citation
  • Chevallier, F., , G. Kelley, , A. J. Simmons, , S. Uppala, , and A. Hernandez, 2005: High clouds over oceans in the ECMWF 15- and 45-yr reanalysis. J. Climate, 18 , 26472661.

    • Search Google Scholar
    • Export Citation
  • Comstock, J. M., , and C. Jakob, 2004: Evaluation of tropical cirrus cloud properties derived from ECMWF model output and ground based measurements over Nauru Island. Geophys. Res. Lett., 31 .L10106, doi:10.1029/2004GL019539.

    • Search Google Scholar
    • Export Citation
  • Eitzen, Z. A., , and K-M. Xu, 2005: A statistical comparison of deep convective cloud objects observed by an Earth Observing System satellite and simulated by a cloud-resolving model. J. Geophys. Res., 110 .D15S14, doi:10.1029/2004JD005086.

    • Search Google Scholar
    • Export Citation
  • Eitzen, Z. A., , and K-M. Xu, 2008: Sensitivity of a large ensemble of tropical convective systems to changes in the thermodynamic and dynamic forcings. J. Atmos. Sci., 65 , 17731794.

    • Search Google Scholar
    • Export Citation
  • Fu, Q., , and K-N. Liou, 1992: On the correlated k-distribution method for radiative transfer in nonhomogeneous atmospheres. J. Atmos. Sci., 49 , 21392156.

    • Search Google Scholar
    • Export Citation
  • Gregory, D., , J-J. Morcrette, , C. Jakob, , A. C. M. Beljaars, , and T. Stockdale, 2000: Revision of convection, radiation and cloud schemes in the ECMWF Integrated Forecasting System. Quart. J. Roy. Meteor. Soc., 126 , 16851710.

    • Search Google Scholar
    • Export Citation
  • Haynes, J. M., , R. T. Marchand, , Z. Luo, , A. Bodas-Salcedo, , and G. L. Stephens, 2007: A multi-purpose radar simulation package: QuickBeam. Bull. Amer. Meteor. Soc., 88 , 17231727.

    • Search Google Scholar
    • Export Citation
  • Jakob, C., 1999: Cloud cover in the ECMWF reanalysis. J. Climate, 12 , 947959.

  • Jakob, C., 2003: An improved strategy for the evaluation of cloud parameterizations in GCMs. Bull. Amer. Meteor. Soc., 84 , 13871401.

  • Jakob, C., and Coauthors, 2000: The IFS cycle CY21r4 made operational in October 1999. ECMWF Newsl., 87 , 29.

  • Klein, S. A., , and C. Jakob, 1999: Validation and sensitivity of frontal clouds simulated by the ECMWF model. Mon. Wea. Rev., 127 , 25142531.

    • Search Google Scholar
    • Export Citation
  • Köhler, M., 2005: Improved prediction of boundary layer clouds. ECMWF Newsl., 105 , 1822.

  • Li, J-L., and Coauthors, 2005: Comparison of EOS MLS cloud ice measurements with ECMWF analyses and GCM simulations: Initial results. Geophys. Res. Lett., 32 .L18710, doi:10.1029/2005GL023788.

    • Search Google Scholar
    • Export Citation
  • Li, J-L., , J. H. Jiang, , D. E. Waliser, , and A. M. Tompkins, 2007: Assessing consistency between EOS MLS and ECMWF analyzed and forecast estimates of cloud ice. Geophys. Res. Lett., 34 .L08701, doi:10.1029/2006GL029022.

    • Search Google Scholar
    • Export Citation
  • Loeb, N. G., , N. Manalo-Smith, , S. Kato, , W. F. Miller, , S. K. Gupta, , P. Minnis, , and B. A. Wielicki, 2003: Angular distribution models for top-of-atmosphere radiative flux estimation from the Clouds and the Earth’s Radiant Energy System instrument on the Tropical Rainfall Measuring Mission satellite. Part I: Methodology. J. Appl. Meteor., 42 , 240265.

    • Search Google Scholar
    • Export Citation
  • Luo, Y., , K-M. Xu, , B. A. Wielicki, , Z. A. Eitzen, , and T. Wong, 2007: Statistical analyses of satellite cloud object data from CERES. Part III: Comparison with cloud-resolving model simulations of tropical convective clouds. J. Atmos. Sci., 64 , 762785.

    • Search Google Scholar
    • Export Citation
  • Mace, G. G., , C. Jakob, , and K. P. Moran, 1998: Validation of hydrometeor occurrence predicted by the ECMWF model using millimeter wave cloud radar. Geophys. Res. Lett., 25 , 16451648.

    • Search Google Scholar
    • Export Citation
  • Miller, S. D., , G. L. Stephens, , and A. C. M. Beljaars, 1999: A validation survey of the ECMWF prognostic cloud scheme using LITE. Geophys. Res. Lett., 26 , 14171420.

    • Search Google Scholar
    • Export Citation
  • Minnis, P., and Coauthors, 1997: Cloud optical property retrieval (Subsystem 4.3). Clouds and the Earth’s Radiant Energy System (CERES) algorithm theoretical basis document, Vol. III: Cloud analyses and radiance inversions (Subsystem 4), CERES Science Team, Eds., NASA, 60 pp. [Available online at http://asd-www.larc.nasa.gov/ATBD/ATBD.html].

  • Morcrette, J-J., 1991: Evaluation of model-generated cloudiness: Satellite-observed and model-generated diurnal variability of brightness temperature. Mon. Wea. Rev., 119 , 12051224.

    • Search Google Scholar
    • Export Citation
  • Morcrette, J-J., 2002: Assessment of the ECMWF model cloudiness and surface radiation fields at the ARM SGP site. Mon. Wea. Rev., 130 , 257277.

    • Search Google Scholar
    • Export Citation
  • Morcrette, J-J., , H. W. Barker, , J. N. S. Cole, , M. H. Iacono, , and R. Pincus, 2008: Impact of a new radiation package, McRad, in the ECMWF integrated forecasting system. Mon. Wea. Rev., 136 , 47184743.

    • Search Google Scholar
    • Export Citation
  • Norris, J. R., , and C. P. Weaver, 2001: Improved techniques for evaluating GCM cloudiness applied to the NCAR CCM3. J. Climate, 14 , 25402550.

    • Search Google Scholar
    • Export Citation
  • Palm, S. P., , A. Benedetti, , and J. Spinhirne, 2005: Validation of ECMWF global forecast model parameters using GLAS atmospheric channel measurements. Geophys. Res. Lett., 32 .L22S09, doi:10.1029/2005GL023535.

    • Search Google Scholar
    • Export Citation
  • Pielke, R. A., 1991: A recommended specific definition of “resolution.”. Bull. Amer. Meteor. Soc., 72 , 19141924.

  • Pincus, R., , C. Hannay, , S. A. Klein, , K-M. Xu, , and R. S. Hemler, 2005: Overlap assumptions for assumed probability distribution function cloud schemes in large scale models. J. Geophys. Res., 110 .D15S09, doi:10.1029/2004JD005100.

    • Search Google Scholar
    • Export Citation
  • Pincus, R., , R. Hemler, , and S. A. Klein, 2006: Using stochastically generated subcolumns to represent cloud structure in a large-scale model. Mon. Wea. Rev., 134 , 36443656.

    • Search Google Scholar
    • Export Citation
  • Räisänen, P., , H. W. Barker, , M. F. Khairoutdinov, , J. Li, , and D. A. Randall, 2004: Stochastic generation of subgrid-scale cloudy columns for large-scale models. Quart. J. Roy. Meteor. Soc., 130 , 20472067.

    • Search Google Scholar
    • Export Citation
  • Schiffer, R. A., , and W. B. Rossow, 1983: The International Satellite Cloud Climatology Project (ISCCP): The first project of the World Climate Research Programme. Bull. Amer. Meteor. Soc., 64 , 779784.

    • Search Google Scholar
    • Export Citation
  • Simmons, A. J., , and A. Hollingsworth, 2002: Some aspects of the improvement in skill of numerical weather prediction. Quart. J. Roy. Meteor. Soc., 128 , 647677.

    • Search Google Scholar
    • Export Citation
  • Slingo, J. M., 1987: The development and verification of a cloud prediction scheme for the ECMWF model. Quart. J. Roy. Meteor. Soc., 113 , 899927.

    • Search Google Scholar
    • Export Citation
  • Stokes, G. M., , and S. E. Schwartz, 1994: The Atmospheric Radiation Measurement (ARM) program: Programmatic background and design of the cloud and radiation test bed. Bull. Amer. Meteor. Soc., 75 , 12021221.

    • Search Google Scholar
    • Export Citation
  • Suttles, J. T., and Coauthors, 1988: Angular radiation models for earth-atmosphere systems. Vol. I, Shortwave radiation. NASA Rep. RP-1184, NASA, Washington, DC, 144 pp.

  • Suttles, J. T., , R. N. Green, , G. L. Smith, , B. A. Wielicki, , I. J. Walker, , V. R. Taylor, , and L. L. Stowe, 1989: Angular radiation models for earth-atmosphere systems. Vol. II, Longwave radiation. NASA Rep. RP-1184, NASA, Washington, DC, 84 pp.

  • Tiedtke, M., 1989: A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon. Wea. Rev., 117 , 17791800.

    • Search Google Scholar
    • Export Citation
  • Tiedtke, M., 1993: Representation of clouds in large-scale models. Mon. Wea. Rev., 121 , 30403061.

  • Tselioudis, G., , and C. Jakob, 2002: Evaluation of midlatitude cloud properties in a weather and a climate model: Dependence on dynamic regime and spatial resolution. J. Geophys. Res., 107 .4781, doi:10.1029/2002JD002259.

    • Search Google Scholar
    • Export Citation
  • Uppala, S. M., and Coauthors, 2005: The ERA-40 re-analysis. Quart. J. Roy. Meteor. Soc., 131 , 29613012. doi:10.1256/qj.04.176.

  • Webb, M., , C. Senior, , S. Bony, , and J-J. Morcrette, 2001: Combining ERBE and ISCCP data to assess clouds in the Hadley Centre, ECMWF and LMD atmospheric climate models. Climate Dyn., 17 , 905922.

    • Search Google Scholar
    • Export Citation
  • Wielicki, B. A., , and R. M. Welch, 1986: Cumulus cloud properties derived using Landsat satellite data. J. Climate Appl. Meteor., 25 , 261276.

    • Search Google Scholar
    • Export Citation
  • Wielicki, B. A., , R. D. Cess, , M. D. King, , D. A. Randall, , and E. F. Harrison, 1995: Mission to Planet Earth: Role of clouds and radiation in climate. Bull. Amer. Meteor. Soc., 76 , 21252153.

    • Search Google Scholar
    • Export Citation
  • Wielicki, B. A., , B. R. Barkstrom, , E. F. Harrison, , R. B. Lee III, , G. L. Smith, , and J. E. Cooper, 1996: Clouds and the Earth’s Radiant Energy System (CERES): An Earth Observing System Experiment. Bull. Amer. Meteor. Soc., 77 , 853868.

    • Search Google Scholar
    • Export Citation
  • Wilkinson, J. M., , R. J. Hogan, , A. J. Ilingworth, , and A. Benedetti, 2008: Use of a lidar forward model for global comparisons of cloud fraction between the ICESat lidar and the ECMWF model. Mon. Wea. Rev., 136 , 37423759.

    • Search Google Scholar
    • Export Citation
  • Willen, U., , S. Crewell, , H. K. Baltink, , and O. Sievers, 2005: Assessing model predicted vertical cloud structure and cloud overlap with radar and lidar ceilometer observations for the Baltex Bridge Campaign of CLIWA-NET. Atmos. Res., 75 , 227255.

    • Search Google Scholar
    • Export Citation
  • Xie, S. C., , S. A. Klein, , J. J. Yio, , A. C. M. Beljaars, , C. N. Long, , and M-H. Zhang, 2006: An assessment of ECMWF analyses and model forecasts over the North Slope of Alaska using observations from the ARM Mixed-Phase Arctic Cloud Experiment. J. Geophys. Res., 111 .D05107, doi:10.1029/2005JD006509.

    • Search Google Scholar
    • Export Citation
  • Xu, K-M., 2005: The sensitivity of diagnostic radiative properties to cloud microphysics among cloud-resolving model simulations. J. Atmos. Sci., 62 , 12411254.

    • Search Google Scholar
    • Export Citation
  • Xu, K-M., 2006: Using the bootstrap method for a statistical significance test of differences between histograms. Mon. Wea. Rev., 134 , 14421453.

    • Search Google Scholar
    • Export Citation
  • Xu, K-M., , T. Wong, , B. A. Wielicki, , L. Parker, , and Z. A. Eitzen, 2005: Statistical analyses of satellite cloud object data from CERES. Part I: Methodology and preliminary results of 1998 El Niño/2000 La Niña. J. Climate, 18 , 24972514.

    • Search Google Scholar
    • Export Citation
  • Xu, K-M., , T. Wong, , B. A. Wielicki, , L. Parker, , B. Lin, , Z. A. Eitzen, , and M. Branson, 2007: Statistical analyses of satellite cloud object data from CERES. Part II: Tropical convective cloud objects during 1998 El Niño and evidence for supporting the fixed anvil temperature hypothesis. J. Climate, 20 , 819842.

    • Search Google Scholar
    • Export Citation
  • Xu, K-M., , T. Wong, , B. A. Wielicki, , and L. Parker, 2008: Statistical analyses of satellite cloud object data from CERES. Part IV: Boundary layer cloud objects during 1998 El Niño. J. Climate, 21 , 15001522.

    • Search Google Scholar
    • Export Citation
  • Yu, W., , M. Doutriaux, , G. Sèze, , H. Le Treut, , and M. Desbois, 1996: A methodology study of the validation of clouds in GCMs using ISCCP satellite observations. Climate Dyn., 12 , 389401.

    • Search Google Scholar
    • Export Citation
  • Zhao, Q., , and F. H. Carr, 1997: A prognostic cloud scheme for operational NWP models. Mon. Wea. Rev., 125 , 19311953.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 48 48 6
PDF Downloads 15 15 3

Evaluation of Cloud Physical Properties of ECMWF Analysis and Re-Analysis (ERA) against CERES Tropical Deep Convective Cloud Object Observations

View More View Less
  • 1 NASA Langley Research Center, Hampton, Virginia
© Get Permissions
Restricted access

Abstract

This study presents an approach that converts the vertical profiles of grid-averaged cloud properties from large-scale models to probability density functions (pdfs) of subgrid-cell cloud physical properties measured at satellite footprints. Cloud physical and radiative properties, rather than just cloud and precipitation occurrences, of assimilated cloud systems by the European Centre for Medium-Range Weather Forecasts (ECMWF) operational analysis (EOA) and 40-yr ECMWF Re-Analysis (ERA-40) are validated against those obtained from Earth Observing System satellite cloud object data for the January–August 1998 and March 2000 periods. These properties include the ice water path (IWP), cloud-top height and temperature, cloud optical depth, and solar and infrared radiative fluxes. Each cloud object, a contiguous region with similar cloud physical properties, is temporally and spatially matched with EOA and ERA-40 data. Results indicate that most pdfs of EOA and ERA-40 cloud physical and radiative properties agree with those of satellite observations of the tropical deep convective cloud object type for the January–August 1998 period. There are, however, significant discrepancies in selected ranges of the cloud property pdfs such as the upper range of EOA cloud-top height. A major discrepancy is that the dependence of the pdfs on the cloud object size for both EOA and ERA-40 is not as strong as in the observations. Modifications to the cloud parameterization in ECMWF that occurred in October 1999 eliminate the clouds near the tropopause but shift power of the pdf to lower cloud-top heights and greatly reduce the ranges of IWP and cloud optical depth pdfs. These features persist in ERA-40 due to the use of the same cloud parameterizations. The less sophisticated data assimilation technique and the lack of snow water content information in ERA-40, not the larger horizontal grid spacing, are also responsible for the disagreements with observed pdfs of cloud physical properties, although the detection rates of cloud object occurrence are improved for small-size categories. A possible improvement to the convective parameterization is to introduce a stronger dependence of updraft penetration heights on grid-cell dynamics.

Corresponding author address: Dr. Kuan-Man Xu, Climate Science Branch, NASA Langley Research Center, Mail Stop 420, Hampton, VA 23681. Email: Kuan-Man.Xu@nasa.gov

Abstract

This study presents an approach that converts the vertical profiles of grid-averaged cloud properties from large-scale models to probability density functions (pdfs) of subgrid-cell cloud physical properties measured at satellite footprints. Cloud physical and radiative properties, rather than just cloud and precipitation occurrences, of assimilated cloud systems by the European Centre for Medium-Range Weather Forecasts (ECMWF) operational analysis (EOA) and 40-yr ECMWF Re-Analysis (ERA-40) are validated against those obtained from Earth Observing System satellite cloud object data for the January–August 1998 and March 2000 periods. These properties include the ice water path (IWP), cloud-top height and temperature, cloud optical depth, and solar and infrared radiative fluxes. Each cloud object, a contiguous region with similar cloud physical properties, is temporally and spatially matched with EOA and ERA-40 data. Results indicate that most pdfs of EOA and ERA-40 cloud physical and radiative properties agree with those of satellite observations of the tropical deep convective cloud object type for the January–August 1998 period. There are, however, significant discrepancies in selected ranges of the cloud property pdfs such as the upper range of EOA cloud-top height. A major discrepancy is that the dependence of the pdfs on the cloud object size for both EOA and ERA-40 is not as strong as in the observations. Modifications to the cloud parameterization in ECMWF that occurred in October 1999 eliminate the clouds near the tropopause but shift power of the pdf to lower cloud-top heights and greatly reduce the ranges of IWP and cloud optical depth pdfs. These features persist in ERA-40 due to the use of the same cloud parameterizations. The less sophisticated data assimilation technique and the lack of snow water content information in ERA-40, not the larger horizontal grid spacing, are also responsible for the disagreements with observed pdfs of cloud physical properties, although the detection rates of cloud object occurrence are improved for small-size categories. A possible improvement to the convective parameterization is to introduce a stronger dependence of updraft penetration heights on grid-cell dynamics.

Corresponding author address: Dr. Kuan-Man Xu, Climate Science Branch, NASA Langley Research Center, Mail Stop 420, Hampton, VA 23681. Email: Kuan-Man.Xu@nasa.gov

Save