• Black, M. L., , J. F. Gamache, , F. D. Marks, , C. E. Samsury, , and H. E. Willoughby, 2002: Eastern Pacific Hurricanes Jimena of 1991 and Olivia of 1994: The effect of vertical shear on structure and intensity. Mon. Wea. Rev., 130 , 22912312.

    • Search Google Scholar
    • Export Citation
  • Black, R. A., , H. B. Bluestein, , and M. L. Black, 1994: Unusually strong vertical motions in a Caribbean hurricane. Mon. Wea. Rev., 122 , 27222739.

    • Search Google Scholar
    • Export Citation
  • Bosart, B., , W-C. Lee, , and R. M. Wakimoto, 2002: Procedures to improve the accuracy of airborne Doppler radar data. J. Atmos. Oceanic Technol., 19 , 322339.

    • Search Google Scholar
    • Export Citation
  • Bosart, L. F., , C. S. Velden, , W. E. Bracken, , J. Molinari, , and P. G. Black, 2000: Environmental influences on the rapid intensification of Hurricane Opal (1995) over the Gulf of Mexico. Mon. Wea. Rev., 128 , 322352.

    • Search Google Scholar
    • Export Citation
  • Bousquet, O., , and M. Chong, 1998: A Multiple-Doppler Synthesis and Continuity Adjustment Technique (MUSCAT) to recover wind components from Doppler radar measurements. J. Atmos. Oceanic Technol., 15 , 343359.

    • Search Google Scholar
    • Export Citation
  • Braun, S. A., 2002: A cloud-resolving simulation of Hurricane Bob (1991): Storm structure and eyewall buoyancy. Mon. Wea. Rev., 130 , 15731592.

    • Search Google Scholar
    • Export Citation
  • Braun, S. A., , and L. Wu, 2007: A numerical study of Hurricane Erin (2001). Part II: Shear and the organization of eyewall vertical motion. Mon. Wea. Rev., 135 , 11791194.

    • Search Google Scholar
    • Export Citation
  • Braun, S. A., , M. T. Montgomery, , and Z. Pu, 2006: High-resolution simulation of Hurricane Bonnie (1998). Part I: The organization of eyewall vertical motion. J. Atmos. Sci., 63 , 1942.

    • Search Google Scholar
    • Export Citation
  • Chen, Y., , and M. K. Yau, 2001: Spiral bands in a simulated hurricane. Part I: Vortex Rossby wave verification. J. Atmos. Sci., 58 , 21282145.

    • Search Google Scholar
    • Export Citation
  • Corbosiero, K. L., , and J. Molinari, 2003: The relationship between storm motion, vertical wind shear, and convective asymmetries in tropical cyclones. J. Atmos. Sci., 60 , 366376.

    • Search Google Scholar
    • Export Citation
  • Corbosiero, K. L., , J. Molinari, , and M. L. Black, 2005: The structure and evolution of Hurricane Elena (1995). Part I: Symmetric intensification. Mon. Wea. Rev., 133 , 29052921.

    • Search Google Scholar
    • Export Citation
  • Corbosiero, K. L., , J. Molinari, , A. R. Aiyyer, , and M. L. Black, 2006: The structure and evolution of Hurricane Elena (1985). Part II: Convective asymmetries and evidence for vortex Rossby waves. Mon. Wea. Rev., 134 , 30733091.

    • Search Google Scholar
    • Export Citation
  • Cram, T. A., , J. Persing, , M. T. Montgomery, , and S. A. Braun, 2007: A Lagrangian trajectory view on transport and mixing processes between the eye, eyewall, and environment using a high-resolution simulation of Hurricane Bonnie (1998). J. Atmos. Sci., 64 , 18351856.

    • Search Google Scholar
    • Export Citation
  • DeMaria, M., , and J. Kaplan, 1999: An updated Statistical Hurricane Intensity Prediction Scheme (SHIPS) for the Atlantic and eastern North Pacific basins. Wea. Forecasting, 14 , 326337.

    • Search Google Scholar
    • Export Citation
  • DeMaria, M., , R. M. Zehr, , J. P. Kossin, , and J. A. Knaff, 2002: The use of GOES imagery in statistical hurricane intensity prediction. Preprints, 25th Conf. on Hurricanes and Tropical Meteorology, San Diego, CA, Amer. Meteor. Soc., 120–121.

    • Search Google Scholar
    • Export Citation
  • DeMaria, M., , M. Mainelli, , L. K. Shay, , J. A. Knaff, , and J. Kaplan, 2005: Further improvements to the Statistical Hurricane Intensity Prediction Scheme (SHIPS). Wea. Forecasting, 20 , 531543.

    • Search Google Scholar
    • Export Citation
  • Dunion, J. P., , and C. S. Velden, 2004: The impact of the Saharan air layer on Atlantic tropical cyclone activity. Bull. Amer. Meteor. Soc., 75 , 353365.

    • Search Google Scholar
    • Export Citation
  • Eastin, M. D., , W. M. Gray, , and P. G. Black, 2005: Buoyancy of convective vertical motions in the inner core of intense hurricanes. Part II: Case studies. Mon. Wea. Rev., 133 , 209227.

    • Search Google Scholar
    • Export Citation
  • Frank, W. M., , and E. A. Ritchie, 1999: Effects of environmental flow upon tropical cyclone structure. Mon. Wea. Rev., 127 , 20442061.

  • Frank, W. M., , and E. A. Ritchie, 2001: Effects of vertical wind shear on the intensity and structure of numerically simulated hurricanes. Mon. Wea. Rev., 129 , 22492269.

    • Search Google Scholar
    • Export Citation
  • Gamache, J. F., 1997: Evaluation of a fully three-dimensional variational Doppler analysis technique. Preprints, 28th Conf. on Radar Meteorology, Austin, TX, Amer. Meteor. Soc., 422–423.

    • Search Google Scholar
    • Export Citation
  • Gamache, J. F., , F. D. Marks Jr., , and F. Roux, 1995: Comparison of three airborne Doppler sampling techniques with airborne in situ wind observations in Hurricane Gustav (1990). J. Atmos. Oceanic Technol., 12 , 171181.

    • Search Google Scholar
    • Export Citation
  • Gao, J., , M. Xue, , A. Shapiro, , and K. K. Droegemeier, 1999: A variational method for the analysis of three-dimensional wind fields from two Doppler radars. Mon. Wea. Rev., 127 , 21282142.

    • Search Google Scholar
    • Export Citation
  • Holland, G. J., 1983: Angular momentum transports in tropical cyclones. Quart. J. Roy. Meteor. Soc., 109 , 187210.

  • Jones, S. C., 1995: The evolution of vortices in vertical shear: Initially barotropic vortices. Quart. J. Roy. Meteor. Soc., 121 , 821851.

    • Search Google Scholar
    • Export Citation
  • Jorgensen, D. P., 1984: Mesoscale and convective-scale characteristics of mature hurricanes. Part II: Inner core structure of Hurricane Allen (1980). J. Atmos. Sci., 41 , 12871311.

    • Search Google Scholar
    • Export Citation
  • Kaplan, J., , and M. DeMaria, 2003: Large-scale characteristics of rapidly intensifying tropical cyclones in the North Atlantic basin. Wea. Forecasting, 18 , 10931108.

    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., , and M. D. Eastin, 2001: Two distinct regimes in the kinematic and thermodynamic structure of the hurricane eye and eyewall. J. Atmos. Sci., 58 , 10791090.

    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., , and W. H. Schubert, 2001: Mesovortices, polygonal flow patterns, and rapid pressure falls in hurricane-like vortices. J. Atmos. Sci., 58 , 21962209.

    • Search Google Scholar
    • Export Citation
  • Kuo, H. C., , R. T. Williams, , and J-H. Chen, 1999: A possible mechanism for the eye rotation of Typhoon Herb. J. Atmos. Sci., 56 , 16591673.

    • Search Google Scholar
    • Export Citation
  • Lawrence, M. B., 1999: Eastern North Pacific hurricane season of 1997. Mon. Wea. Rev., 127 , 24402454.

  • Liu, Y., , D-L. Zhang, , and M. K. Yau, 1999: A multiscale numerical study of Hurricane Andrew (1992). Part II: Kinematics and inner-core structures. Mon. Wea. Rev., 127 , 25972616.

    • Search Google Scholar
    • Export Citation
  • Mallen, K. J., , M. T. Montgomery, , and B. Wang, 2005: Reexamining the near-core radial structure of the tropical cyclone primary circulation: Implications for vortex resiliency. J. Atmos. Sci., 62 , 408425.

    • Search Google Scholar
    • Export Citation
  • Marks, F. D., , and L. K. Shay, 1998: Landfalling tropical cyclones: Forecast problems and associated research opportunities. Bull. Amer. Meteor. Soc., 79 , 867876.

    • Search Google Scholar
    • Export Citation
  • Marks Jr., F. D., , R. A. Houze Jr., , and J. F. Gamache, 1992: Dual-aircraft investigation of the inner core of Hurricane Norbert. Part I: Kinematic structure. J. Atmos. Sci., 49 , 919942.

    • Search Google Scholar
    • Export Citation
  • Molinari, J., , S. Skubis, , and D. Vollaro, 1995: External influences on hurricane intensity. Part III: Potential vorticity structure. J. Atmos. Sci., 52 , 35933606.

    • Search Google Scholar
    • Export Citation
  • Möller, J. D., , and M. T. Montgomery, 2000: Tropical cyclone evolution via potential vorticity anomalies in a three-dimensional balance model. J. Atmos. Sci., 57 , 33663387.

    • Search Google Scholar
    • Export Citation
  • Möller, J. D., , and L. J. Shapiro, 2005: Influences of asymmetric heating on hurricane evolution in the MM5. J. Atmos. Sci., 62 , 39743992.

    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., , and R. J. Kallenbach, 1997: A theory for vortex Rossby waves and its application to spiral bands and intensity changes in hurricanes. Quart. J. Roy. Meteor. Soc., 123 , 435465.

    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., , V. A. Vladimirov, , and P. V. Denissenko, 2002: An experimental study on hurricane mesovortices. J. Fluid Mech., 471 , 132.

    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., , and L. D. Grasso, 2003: Three-dimensional, nonhydrostatic perturbations to balanced, hurricane-like vortices. Part II: Symmetric response and nonlinear simulations. J. Atmos. Sci., 60 , 27172745.

    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., , Y. Moon, , and D. P. Stern, 2007: Tropical cyclone intensification from asymmetric convection: Energetics and efficiency. J. Atmos. Sci., 64 , 33773405.

    • Search Google Scholar
    • Export Citation
  • Ooyama, K. V., 1969: Numerical simulation of the life cycle of tropical cyclones. J. Atmos. Sci., 26 , 340.

  • Palmen, E., , and H. Riehl, 1957: Budget of angular momentum and energy in tropical cyclones. J. Meteor., 14 , 150159.

  • Persing, J., , and M. T. Montgomery, 2003: Hurricane superintensity. J. Atmos. Sci., 60 , 23492371.

  • Pfeffer, R. L., , and M. Challa, 1981: A numerical study of the role of eddy fluxes of momentum in the development of Atlantic hurricanes. J. Atmos. Sci., 38 , 23932398.

    • Search Google Scholar
    • Export Citation
  • Reasor, P. D., , M. T. Montgomery, , F. D. Marks Jr., , and J. F. Gamache, 2000: Low-wavenumber structure and evolution of the hurricane inner core observed by airborne dual-Doppler radar. Mon. Wea. Rev., 128 , 16531680.

    • Search Google Scholar
    • Export Citation
  • Reasor, P. D., , M. T. Montgomery, , and L. D. Grasso, 2004: A new look at the problem of tropical cyclones in vertical shear flow: Vortex resiliency. J. Atmos. Sci., 61 , 322.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., , and T. M. Smith, 1993: An improved real-time global sea surface temperature analysis. J. Climate, 6 , 114119.

  • Rozoff, C. M., , J. P. Kossin, , W. H. Schubert, , and P. J. Mulero, 2009: Internal control of hurricane intensity variability: The dual nature of potential vorticity mixing. J. Atmos. Sci., 66 , 133147.

    • Search Google Scholar
    • Export Citation
  • Schade, L. R., , and K. A. Emanuel, 1999: The ocean’s effect on the intensity of tropical cyclones: Results from a simple coupled atmosphere–ocean model. J. Atmos. Sci., 56 , 642651.

    • Search Google Scholar
    • Export Citation
  • Schecter, D. A., , and M. T. Montgomery, 2007: Waves in a cloudy vortex. J. Atmos. Sci., 56 , 642651.

  • Schubert, W. H., , M. T. Mongomery, , R. K. Taft, , T. A. Guinn, , S. R. Fulton, , J. P. Kossin, , and J. P. Edwards, 1999: Polygonal eyewalls, asymmetric eye contraction, and potential vorticity mixing in hurricanes. J. Atmos. Sci., 56 , 11971223.

    • Search Google Scholar
    • Export Citation
  • Shapiro, L. J., 2000: Potential vorticity asymmetries and tropical cyclone evolution in a three-layer model. J. Atmos. Sci., 57 , 36453662.

    • Search Google Scholar
    • Export Citation
  • Shapiro, L. J., , and H. E. Willoughby, 1982: The response of balanced hurricanes to local sources of heat and momentum. J. Atmos. Sci., 39 , 378394.

    • Search Google Scholar
    • Export Citation
  • Sitkowski, M., , and G. M. Barnes, 2009: Low-level thermodynamic, kinematic, and reflectivity fields of Hurricane Guillermo (1997) during rapid intensification. Mon. Wea. Rev., 137 , 645663.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., 2002a: Vortex Rossby waves in a numerically simulated tropical cyclone. Part I: Overall structure, potential vorticity, and kinetic energy budgets. J. Atmos. Sci., 59 , 12131238.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., 2002b: Vortex Rossby waves in a numerically simulated tropical cyclone. Part II: The role in tropical cyclone structure and intensity change. J. Atmos. Sci., 59 , 12391262.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., , and G. J. Holland, 1996: Tropical cyclone motion and evolution in vertical shear. J. Atmos. Sci., 53 , 33133332.

  • Willoughby, H. E., , and M. B. Chelmow, 1982: Objective determination of hurricane tracks from aircraft observations. Mon. Wea. Rev., 110 , 12981305.

    • Search Google Scholar
    • Export Citation
  • Yang, B., , Y. Wang, , and B. Wang, 2007: The effect of internally generated inner-core asymmetries on tropical cyclone potential intensity. J. Atmos. Sci., 64 , 11651188.

    • Search Google Scholar
    • Export Citation
  • Zhang, D-L., , Y. Liu, , and M. K. Yau, 2001: A multiscale numerical study of Hurricane Andrew (1992). Part IV: Unbalanced flows. Mon. Wea. Rev., 129 , 92107.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 85 85 11
PDF Downloads 64 64 15

Rapidly Intensifying Hurricane Guillermo (1997). Part I: Low-Wavenumber Structure and Evolution

View More View Less
  • 1 Department of Meteorology, The Florida State University, Tallahassee, Florida
  • | 2 Department of Geography and Earth Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina
  • | 3 Hurricane Research Division, Atlantic Oceanographic and Meteorological Laboratory, NOAA, Miami, Florida
© Get Permissions
Restricted access

Abstract

The structure and evolution of rapidly intensifying Hurricane Guillermo (1997) is examined using airborne Doppler radar observations. In this first part, the low-azimuthal-wavenumber component of the vortex is presented. Guillermo’s intensification occurred in an environmental flow with 7–8 m s−1 of deep-layer vertical shear. As a consequence of the persistent vertical shear forcing of the vortex, convection was observed primarily in the downshear left quadrant of the storm. The greatest intensification during the ∼6-h Doppler observation period coincided with the formation and cyclonic rotation of several particularly strong convective bursts through the left-of-shear semicircle of the eyewall. Some of the strongest convective bursts were triggered by azimuthally propagating low-wavenumber vorticity asymmetries. Mesoscale budget analyses of axisymmetric angular momentum and relative vorticity within the eyewall are presented to elucidate the mechanisms contributing to Guillermo’s structural evolution during this period. The observations support a developing conceptual model of the rapidly intensifying, vertically sheared hurricane in which shear-forced mesoscale ascent in the downshear eyewall is modulated by internally generated vorticity asymmetries yielding episodes of anomalous intensification.

Corresponding author address: Paul Reasor, Dept. of Meteorology, The Florida State University, 404 Love Building, Tallahassee, FL 23206. Email: reasor@met.fsu.edu

Abstract

The structure and evolution of rapidly intensifying Hurricane Guillermo (1997) is examined using airborne Doppler radar observations. In this first part, the low-azimuthal-wavenumber component of the vortex is presented. Guillermo’s intensification occurred in an environmental flow with 7–8 m s−1 of deep-layer vertical shear. As a consequence of the persistent vertical shear forcing of the vortex, convection was observed primarily in the downshear left quadrant of the storm. The greatest intensification during the ∼6-h Doppler observation period coincided with the formation and cyclonic rotation of several particularly strong convective bursts through the left-of-shear semicircle of the eyewall. Some of the strongest convective bursts were triggered by azimuthally propagating low-wavenumber vorticity asymmetries. Mesoscale budget analyses of axisymmetric angular momentum and relative vorticity within the eyewall are presented to elucidate the mechanisms contributing to Guillermo’s structural evolution during this period. The observations support a developing conceptual model of the rapidly intensifying, vertically sheared hurricane in which shear-forced mesoscale ascent in the downshear eyewall is modulated by internally generated vorticity asymmetries yielding episodes of anomalous intensification.

Corresponding author address: Paul Reasor, Dept. of Meteorology, The Florida State University, 404 Love Building, Tallahassee, FL 23206. Email: reasor@met.fsu.edu

Save