• Aberson, S. D., , M. L. Black, , R. A. Black, , R. W. Burpee, , J. J. Cione, , C. W. Landsea, , and F. D. Marks Jr., 2006: Thirty years of tropical cyclone research with the NOAA P-3 aircraft. Bull. Amer. Meteor. Soc., 87 , 10391055.

    • Search Google Scholar
    • Export Citation
  • Adler, R. F., , and E. B. Rodgers, 1977: Satellite-observed latent heat release in a tropical cyclone. Mon. Wea. Rev., 105 , 956963.

  • Barnes, G. M., 2008: Atypical thermodynamic profiles in hurricanes. Mon. Wea. Rev., 136 , 631643.

  • Barnes, G. M., , E. J. Zipser, , D. Jorgensen, , and F. D. Marks, 1983: Mesoscale and convective structure of a hurricane rainband. J. Atmos. Sci., 40 , 21252137.

    • Search Google Scholar
    • Export Citation
  • Barnes, G. M., , J. F. Gamache, , M. A. LeMone, , and G. J. Stossmeister, 1991: A convective cell in a hurricane rainband. Mon. Wea. Rev., 119 , 776794.

    • Search Google Scholar
    • Export Citation
  • Black, M. L., , J. F. Gamache, , F. D. Marks Jr., , C. E. Samsury, , and H. E. Willoughby, 2002: Eastern Pacific Hurricanes Jimena of 1991 and Olivia of 1994: The effect of vertical shear on structure and intensity. Mon. Wea. Rev., 130 , 22912312.

    • Search Google Scholar
    • Export Citation
  • Black, P. G., , F. D. Marks Jr., , and R. A. Black, 1986: Supercell structure in a tropical cyclone. Preprints, 23rd Conf. on Radar Meteorology/Conf. on Cloud Physics, Snowmass, CO, Amer. Meteor. Soc., JP255–JP259.

    • Search Google Scholar
    • Export Citation
  • Bosart, L. F., , C. S. Velden, , W. E. Bracken, , J. Molinari, , and P. G. Black, 2000: Environmental influences on the rapid intensification of Hurricane Opal (1995) over the Gulf of Mexico. Mon. Wea. Rev., 128 , 322352.

    • Search Google Scholar
    • Export Citation
  • Braun, S. A., 2002: A cloud resolving simulation of Hurricane Bob (1991): Storm structure and eyewall buoyancy. Mon. Wea. Rev., 130 , 15731592.

    • Search Google Scholar
    • Export Citation
  • Cerveny, R. S., , and L. E. Newman, 2000: Climatological relationships between tropical cyclones and rainfall. Mon. Wea. Rev., 128 , 33293336.

    • Search Google Scholar
    • Export Citation
  • Croxford, M., , and G. M. Barnes, 2002: Inner core strength of Atlantic tropical cyclones. Mon. Wea. Rev., 130 , 127139.

  • DeMaria, M., , and J. Kaplan, 1994: A Statistical Hurricane Intensity Prediction Scheme (SHIPS) for the Atlantic basin. Wea. Forecasting, 9 , 209220.

    • Search Google Scholar
    • Export Citation
  • Eastin, M. D., , P. G. Black, , and W. M. Gray, 2002: Flight-level thermodynamic instrument wetting errors in hurricanes. Part II: Implications. Mon. Wea. Rev., 130 , 842851.

    • Search Google Scholar
    • Export Citation
  • Eastin, M. D., , W. M. Gray, , and P. G. Black, 2005a: Buoyancy of convective vertical motions in the inner core of intense hurricanes. Part I: General statistics. Mon. Wea. Rev., 133 , 188208.

    • Search Google Scholar
    • Export Citation
  • Eastin, M. D., , W. M. Gray, , and P. G. Black, 2005b: Buoyancy of convective vertical motions in the inner core of intense hurricanes. Part II: Case studies. Mon. Wea. Rev., 133 , 209227.

    • Search Google Scholar
    • Export Citation
  • Eastin, M. D., , P. D. Reasor, , F. D. Marks Jr., , and J. F. Gamache, 2005c: A dual-Doppler analysis of Hurricane Guillermo (1997): Interactions between the eye and eyewall during rapid intensification. Preprints, 32nd Conf. on Radar Meteorology/11th Conf. on Mesoscale Processes, Albuquerque, NM, Amer. Meteor. Soc., J2J.4. [Available online at http://ams.confex.com/ams/pdfpapers/96274.pdf.].

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1986: An air-sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. J. Atmos. Sci., 43 , 585604.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1988: The maximum intensity of hurricanes. J. Atmos. Sci., 45 , 11431155.

  • Evans, J. L., 1993: Sensitivity of tropical cyclone intensity to sea surface temperature. J. Climate, 6 , 11331141.

  • Frank, W. M., , and E. A. Ritchie, 2001: Effects of vertical wind shear on the intensity and structure of numerically simulated hurricanes. Mon. Wea. Rev., 129 , 22492269.

    • Search Google Scholar
    • Export Citation
  • Franklin, J. L., , S. J. Lord, , and F. D. Marks Jr., 1988: Dropwindsonde and radar observations of the eye of Hurricane Gloria (1985). Mon. Wea. Rev., 116 , 12371244.

    • Search Google Scholar
    • Export Citation
  • Franklin, J. L., , M. L. Black, , and K. Valde, 2003: GPS dropwindsonde wind profiles in hurricanes and their operational implications. Wea. Forecasting, 18 , 3244.

    • Search Google Scholar
    • Export Citation
  • Frederick, W. J., 2003: The rapid intensification and subsequent rapid weakening of Hurricane Lili as compared with historical hurricanes. Wea. Forecasting, 18 , 12951298.

    • Search Google Scholar
    • Export Citation
  • Fritsch, F. N., , and R. E. Carlson, 1980: Monotone piecewise cubic interpolation. SIAM J. Numer. Anal., 17 , 238246.

  • Holland, G. J., 1997: The maximum potential intensity of tropical cyclones. J. Atmos. Sci., 54 , 25192541.

  • Holliday, C. R., , and A. H. Thompson, 1979: Climatological characteristics of rapidly intensifying typhoons. Mon. Wea. Rev., 107 , 10221034.

    • Search Google Scholar
    • Export Citation
  • Hong, X., , S. W. Chang, , S. Raman, , L. K. Shay, , and R. Hodur, 2000: The interaction between Hurricane Opal (1995) and a warm core ring in the Gulf of Mexico. Mon. Wea. Rev., 128 , 13471365.

    • Search Google Scholar
    • Export Citation
  • Jordan, C. L., 1961: Marked changes in the characteristics of the eye of intense typhoons between the deepening and filling stages. J. Meteor., 18 , 779789.

    • Search Google Scholar
    • Export Citation
  • Jorgensen, D. P., 1984a: Mesoscale and convective-scale characteristics of mature hurricanes. Part I: General observations by research aircraft. J. Atmos. Sci., 41 , 12681286.

    • Search Google Scholar
    • Export Citation
  • Jorgensen, D. P., 1984b: Mesoscale and convective-scale characteristics of mature hurricanes. Part II: Inner core structure of Hurricane Allen (1980). J. Atmos. Sci., 41 , 12871311.

    • Search Google Scholar
    • Export Citation
  • Jorgensen, D. P., , and P. T. Willis, 1982: A Z–R relationship for hurricanes. J. Appl. Meteor., 21 , 356366.

  • Jorgensen, D. P., , E. J. Zipser, , and M. A. LeMone, 1985: Vertical motions in intense hurricanes. J. Atmos. Sci., 42 , 839856.

  • Kaplan, J., , and M. DeMaria, 2003: Large-scale characteristics of rapidly intensifying tropical cyclones in the North Atlantic basin. Wea. Forecasting, 18 , 10931108.

    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., , and M. D. Eastin, 2001: Two distinct regimes in the kinematic and thermodynamic structure of the hurricane eye and eyewall. J. Atmos. Sci., 58 , 10791090.

    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., , and W. H. Schubert, 2001: Mesovortices, polygonal flow patterns, and rapid pressure falls in hurricane-like vortices. J. Atmos. Sci., 58 , 21962209.

    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., , W. H. Schubert, , and M. T. Montgomery, 2000: Unstable interactions between a hurricane’s primary eyewall and a secondary ring of enhanced vorticity. J. Atmos. Sci., 57 , 38933917.

    • Search Google Scholar
    • Export Citation
  • Landsea, C. W., 1993: A climatology of intense (or major) Atlantic hurricanes. Mon. Wea. Rev., 121 , 17031713.

  • Lawrence, M. B., 1999: Eastern North Pacific hurricane season of 1997. Mon. Wea. Rev., 127 , 24402454.

  • Malkus, J. S., , and H. Riehl, 1960: On the dynamics and energy transformations in steady-state hurricanes. Tellus, 12 , 120.

  • Marks Jr., F. D., 1985: Evolution of the structure of precipitation in Hurricane Allen (1980). Mon. Wea. Rev., 113 , 909930.

  • Montgomery, M. T., , M. M. Bell, , S. D. Aberson, , and M. L. Black, 2006: Hurricane Isabel (2003): New insights into the physics of intense storms. Part I: Mean vortex structure and maximum intensity estimates. Bull. Amer. Meteor. Soc., 87 , 13351346.

    • Search Google Scholar
    • Export Citation
  • Powell, M. D., 1980: Evaluations of diagnostic boundary-layer models applied to hurricanes. Mon. Wea. Rev., 108 , 757766.

  • Powell, M. D., 1990: Boundary layer structure and dynamics in outer hurricane rainbands. Part II: Downdraft modification and mixed layer recovery. Mon. Wea. Rev., 118 , 918938.

    • Search Google Scholar
    • Export Citation
  • Rodgers, E. B., , and R. F. Adler, 1981: Tropical cyclone rainfall characteristics as determined from a satellite passive microwave radiometer. Mon. Wea. Rev., 109 , 506521.

    • Search Google Scholar
    • Export Citation
  • Rodgers, E. B., , W. S. Olson, , V. M. Karyampudi, , and H. F. Pierce, 1998: Satellite-derived latent heating distribution and environmental influences in Hurricane Opal (1995). Mon. Wea. Rev., 126 , 12291247.

    • Search Google Scholar
    • Export Citation
  • Rodgers, E. B., , W. S. Olson, , J. H. Halverson, , J. Simpson, , and H. Pierce, 2000: Environmental forcing of Supertyphoon Paka’s (1997) latent heat structure. J. Appl. Meteor., 39 , 19832006.

    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., , D. B. Wolff, , and D. Atlas, 1993: General probability-matched relations between radar reflectivity and rain rate. J. Appl. Meteor., 32 , 5072.

    • Search Google Scholar
    • Export Citation
  • Sadler, J. C., 1978: Mid-season typhoon development and intensity changes and the tropical upper tropospheric trough. Mon. Wea. Rev., 106 , 11371152.

    • Search Google Scholar
    • Export Citation
  • Schneider, R., , and G. M. Barnes, 2005: Low-level kinematic, thermodynamic, and reflectivity fields associated with Hurricane Bonnie (1998) at landfall. Mon. Wea. Rev., 133 , 32433259.

    • Search Google Scholar
    • Export Citation
  • Schubert, W. H., , M. T. Montgomery, , R. K. Taft, , T. A. Guinn, , S. R. Fulton, , J. P. Kossin, , and J. P. Edwards, 1999: Polygonal eyewalls, asymmetric eye contraction, and potential vorticity mixing in hurricanes. J. Atmos. Sci., 56 , 11971223.

    • Search Google Scholar
    • Export Citation
  • Shay, L. K., , G. J. Goni, , and P. G. Black, 2000: Effects of a warm oceanic feature on Hurricane Opal. Mon. Wea. Rev., 128 , 13661383.

  • Sitkowski, M., 2007: Low-level thermodynamic, kinematic and reflectivity fields of Hurricane Guillermo (1997) during rapid intensification. M.S. thesis, Dept. of Meteorology, University of Hawaii, Honolulu, HI, 102 pp.

  • Wang, Y., 2006: Concentric eyewall simulated in a fully compressible, nonhydrostatic, multiply nested, movable mesh tropical cyclone model (TCM4). Preprints, 27th Conf. on Hurricanes and Tropical Meteorology, Monterey, CA, Amer. Meteor. Soc., 6B.6.

    • Search Google Scholar
    • Export Citation
  • Weatherford, C. L., , and W. M. Gray, 1988: Typhoon structure as revealed by aircraft reconnaissance. Part II: Structural variability. Mon. Wea. Rev., 116 , 10321043.

    • Search Google Scholar
    • Export Citation
  • Whitney, L. D., , and J. S. Hobgood, 1997: The relationship between sea surface temperature and maximum intensities of tropical cyclones in the eastern North Pacific Ocean. J. Climate, 10 , 29212930.

    • Search Google Scholar
    • Export Citation
  • Willoughby, H. E., 1990: Temporal changes of the primary circulation in tropical cyclones. J. Atmos. Sci., 47 , 242264.

  • Willoughby, H. E., , J. A. Clos, , and M. G. Shoreibah, 1982: Concentric eye walls, secondary wind maxima, and the evolution of the hurricane vortex. J. Atmos. Sci., 39 , 395411.

    • Search Google Scholar
    • Export Citation
  • Zehr, R. M., 1989: Improving objective satellite estimates of tropical cyclone intensity. Preprints, 18th Conf. on Hurricanes and Tropical Meteorology, San Diego, CA, Amer. Meteor. Soc., J25–J28.

    • Search Google Scholar
    • Export Citation
  • Zhang, D-L., , Y. Liu, , and M. K. Yau, 2001: A multiscale numerical study of Hurricane Andrew (1992). Part V: Inner-core thermodynamics. Mon. Wea. Rev., 129 , 92107.

    • Search Google Scholar
    • Export Citation
  • Zhu, T., , D-L. Zhang, , and F. Weng, 2004: Numerical simulation of Hurricane Bonnie (1998). Part I: Eyewall evolution and intensity changes. Mon. Wea. Rev., 132 , 225241.

    • Search Google Scholar
    • Export Citation
  • Zipser, E. J., , R. J. Meitin, , and M. A. LeMone, 1981: Mesoscale motion fields associated with a slowly moving GATE convective band. J. Atmos. Sci., 38 , 17251750.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 22 22 5
PDF Downloads 13 13 1

Low-Level Thermodynamic, Kinematic, and Reflectivity Fields of Hurricane Guillermo (1997) during Rapid Intensification

View More View Less
  • 1 Department of Meteorology, University of Hawaii at Manoa, Honolulu, Hawaii
© Get Permissions
Restricted access

Abstract

From 0600 UTC 2 August to 1200 UTC 3 August Hurricane Guillermo (1997) deepened by 54 hPa over the eastern North Pacific Ocean, easily exceeding the thresholds that define rapid intensification (RI). The NOAA WP-3Ds observed a portion of this RI with similar two-aircraft missions on consecutive days. The aircraft jettisoned 70 successful global positioning system (GPS) dropwindsondes (or GPS sondes), which reveal how conditions in the lower troposphere on the octant to quadrant scale evolved within 250 km of the eye. Reflectivity fields demonstrate that the deepening is correlated with a spiraling in of the northern eyewall that reduces the eye diameter by 10 km. This behavior contrasts the more uniform contraction witnessed during eyewall replacement cycles. Mixing between the lower eye and eyewall, as detailed by other investigators, appears to have triggered the reduction in the eye diameter. After RI the eyewall remains asymmetrical with the tallest echo tops and heaviest rain rates located on the east or trailing side of the hurricane and to the left of the deep-layer shear vector. Net latent heat release within 60 km of the circulation center increases 21% from 2 to 3 August and is matched by a 30% increase in the inflow below 2 km at the 100-km radius. The GPS sondes, combined with aircraft in situ data for the eyewall region, reveal that the tropical cyclone (TC) establishes an annulus adjacent to and under the eyewall where the tangential wind component and equivalent potential temperature increase substantially. The radial extent of this annulus is constrained by the rainbands that remain robust throughout RI. The results support the argument that RI is controlled by processes within 100 km of the circulation center, and in particular within the eyewall.

Corresponding author address: G. M. Barnes, Dept. of Meteorology, University of Hawaii at Manoa, 2525 Correa Rd., Honolulu, HI 96822. Email: gbarnes@hawaii.edu

Abstract

From 0600 UTC 2 August to 1200 UTC 3 August Hurricane Guillermo (1997) deepened by 54 hPa over the eastern North Pacific Ocean, easily exceeding the thresholds that define rapid intensification (RI). The NOAA WP-3Ds observed a portion of this RI with similar two-aircraft missions on consecutive days. The aircraft jettisoned 70 successful global positioning system (GPS) dropwindsondes (or GPS sondes), which reveal how conditions in the lower troposphere on the octant to quadrant scale evolved within 250 km of the eye. Reflectivity fields demonstrate that the deepening is correlated with a spiraling in of the northern eyewall that reduces the eye diameter by 10 km. This behavior contrasts the more uniform contraction witnessed during eyewall replacement cycles. Mixing between the lower eye and eyewall, as detailed by other investigators, appears to have triggered the reduction in the eye diameter. After RI the eyewall remains asymmetrical with the tallest echo tops and heaviest rain rates located on the east or trailing side of the hurricane and to the left of the deep-layer shear vector. Net latent heat release within 60 km of the circulation center increases 21% from 2 to 3 August and is matched by a 30% increase in the inflow below 2 km at the 100-km radius. The GPS sondes, combined with aircraft in situ data for the eyewall region, reveal that the tropical cyclone (TC) establishes an annulus adjacent to and under the eyewall where the tangential wind component and equivalent potential temperature increase substantially. The radial extent of this annulus is constrained by the rainbands that remain robust throughout RI. The results support the argument that RI is controlled by processes within 100 km of the circulation center, and in particular within the eyewall.

Corresponding author address: G. M. Barnes, Dept. of Meteorology, University of Hawaii at Manoa, 2525 Correa Rd., Honolulu, HI 96822. Email: gbarnes@hawaii.edu

Save