• Arguez, A., , M. A. Bourassa, , and J. J. O’Brien, 2005: Detection of the MJO signal from QuikSCAT. J. Atmos. Oceanic Technol., 22 , 18851894.

    • Search Google Scholar
    • Export Citation
  • Barnett, T. P., 1977: The principal time and space scales of the Pacific trade wind fields. J. Atmos. Sci., 34 , 221236.

  • Barrett, B. S., , L. M. Leslie, , and B. H. Fiedler, 2006: An example of the value of strong climatological signals in tropical cyclone track forecasting: Hurricane Ivan (2004). Mon. Wea. Rev., 134 , 15681577.

    • Search Google Scholar
    • Export Citation
  • Bell, G. D., , and M. Chelliah, 2006: Leading tropical modes associated with interannual and multidecadal variations in seasonal North Atlantic hurricane activity. J. Climate, 19 , 590612.

    • Search Google Scholar
    • Export Citation
  • Bell, G. D., and Coauthors, 2000: Climate assessment for 1999. Bull. Amer. Meteor. Soc., 81 , S1S50.

  • Bessafi, M., , and M. C. Wheeler, 2006: Modulation of south Indian Ocean tropical cyclones by the Madden–Julian oscillation and convectively coupled equatorial waves. Mon. Wea. Rev., 134 , 638656.

    • Search Google Scholar
    • Export Citation
  • Buckley, B. W., , L. M. Leslie, , and M. S. Speer, 2003: The impact of observational technology on climate database quality: Tropical cyclones in the Tasman Sea. J. Climate, 16 , 26402645.

    • Search Google Scholar
    • Export Citation
  • Chan, J. C. L., 2005: The physics of tropical cyclone motion. Annu. Rev. Fluid Mech., 37 , 99128.

  • Chen, T. C., , S. P. Weng, , and S. Schubert, 1999: Maintenance of austral summertime upper-tropospheric circulation over tropical South America: The Bolivian high–Nordeste low system. J. Atmos. Sci., 56 , 20812100.

    • Search Google Scholar
    • Export Citation
  • Collins, J. M., , and I. M. Mason, 2000: Local environmental conditions related to seasonal tropical cyclone activity in the Northeast Pacific basin. Geophys. Res. Lett., 27 , 38813884.

    • Search Google Scholar
    • Export Citation
  • Daubechies, I., 1990: The wavelet transform, time-frequency localization and signal analysis. IEEE Trans. Info. Theory, 36 , 9611005.

  • Emanuel, K. A., 2005: Increasing destructiveness of tropical cyclones over the past 30 years. Nature, 436 , 686688.

  • Emanuel, K. A., 2006: Climate and tropical cyclone activity: A new model downscaling approach. J. Climate, 19 , 47974802.

  • Emanuel, K. A., , R. Sundararajan, , and J. Williams, 2008: Hurricanes and global warming: Results from downscaling IPCC AR4 simulations. Bull. Amer. Meteor. Soc., 89 , 347367.

    • Search Google Scholar
    • Export Citation
  • Evans, J. L., , and R. E. Hart, 2003: Objective indicators of the life cycle evolution of extratropical transition for Atlantic tropical cyclones. Mon. Wea. Rev., 131 , 909925.

    • Search Google Scholar
    • Export Citation
  • Farge, M., 1992: Wavelet transforms and their applications to turbulence. Annu. Rev. Fluid Mech., 24 , 395457.

  • Frank, W. M., , and P. E. Roundy, 2006: The role of tropical waves in tropical cyclogenesis. Mon. Wea. Rev., 134 , 23972417.

  • Frank, W. M., , and G. S. Young, 2007: The interannual variability of tropical cyclones. Mon. Wea. Rev., 135 , 35873598.

  • Franklin, J. L., , C. J. McAdie, , and M. B. Lawrence, 2003: Trends in track forecasting for tropical cyclones threatening the United States, 1970–2001. Bull. Amer. Meteor. Soc., 84 , 11971203.

    • Search Google Scholar
    • Export Citation
  • Goldenberg, S. B., , and L. J. Shapiro, 1996: Physical mechanisms for the association of El Niño and West African rainfall with Atlantic major hurricane activity. J. Climate, 9 , 11691187.

    • Search Google Scholar
    • Export Citation
  • Gray, W. M., 1968: A global view of the origin of tropical disturbances and storms. Mon. Wea. Rev., 96 , 669700.

  • Gray, W. M., 1979: Tropical cyclone intensity determination through upper-tropospheric aircraft reconnaissance. Bull. Amer. Meteor. Soc., 60 , 10691074.

    • Search Google Scholar
    • Export Citation
  • Hall, J. D., , A. J. Matthews, , and D. J. Karoly, 2001: The modulation of tropical cyclone activity in the Australian region by the Madden–Julian oscillation. Mon. Wea. Rev., 129 , 29702982.

    • Search Google Scholar
    • Export Citation
  • Harr, P. A., , and R. L. Elsberry, 1995: Large-scale circulation variability over the tropical western North Pacific. Part I: Spatial patterns and tropical cyclone characteristics. Mon. Wea. Rev., 123 , 12251246.

    • Search Google Scholar
    • Export Citation
  • Hendon, H. H., , and M. L. Salby, 1994: The life cycle of the Madden–Julian oscillation. J. Atmos. Sci., 51 , 22252237.

  • Hendon, H. H., , B. Liebmann, , M. Newman, , J. D. Glick, , and J. E. Schemm, 2000: Medium-range forecast errors associated with active episodes of the Madden–Julian oscillation. Mon. Wea. Rev., 128 , 6986.

    • Search Google Scholar
    • Export Citation
  • Hendon, H. H., , M. C. Wheeler, , and C. Zhang, 2007: Seasonal dependence of the MJO–ENSO relationship. J. Climate, 20 , 531543.

  • Herbert, P. J., , and K. O. Poteat, 1975: A satellite classification technique for subtropical cyclones. NOAA Tech. Memo., NWS SR-83, 25 pp.

    • Search Google Scholar
    • Export Citation
  • Higgins, R. W., , and W. Shi, 2001: Intercomparison of the principal modes of interannual and intraseasonal variability of the North American monsoon system. J. Climate, 14 , 403417.

    • Search Google Scholar
    • Export Citation
  • Inness, P., , and J. M. Slingo, 2003: Simulation of the MJO in a coupled GCM. I: Comparison with observations and an atmosphere-only GCM. J. Climate, 16 , 345364.

    • Search Google Scholar
    • Export Citation
  • Jarvinen, B. R., , C. J. Neumann, , and M. A. S. Davis, 1984: A tropical cyclone data tape for the north Atlantic basin, 1886-1983: Contents, limitations, and uses. NOAA Tech. Memo., NWS NHC-22, 28 pp.

    • Search Google Scholar
    • Export Citation
  • Jones, C., , L. M. V. Carvalho, , R. W. Higgins, , D. E. Waliser, , and J. K. E. Schemm, 2004: A statistical forecast model of tropical intraseasonal convective anomalies. J. Climate, 17 , 20782095.

    • Search Google Scholar
    • Export Citation
  • Jury, M. R., , B. Pathack, , and B. Parker, 1999: Climatic determinants and statistical prediction of tropical cyclone days in the southwest Indian Ocean. J. Climate, 12 , 17381746.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year ReAnalysis Project. Bull. Amer. Meteor. Soc., 77 , 437471.

  • Kiladis, G. N., , K. H. Straub, , and P. T. Haertel, 2005: Zonal and vertical structure of the Madden–Julian oscillation. J. Atmos. Sci., 62 , 27902809.

    • Search Google Scholar
    • Export Citation
  • Kim, J. H., , C. H. Ho, , H. S. Kim, , C. H. Sui, , and S. K. Park, 2008: Systematic variation of summertime tropical cyclone activity in the western North Pacific in relation to the Madden–Julian oscillation. J. Climate, 21 , 11711191.

    • Search Google Scholar
    • Export Citation
  • Klotzbach, P. J., 2007: Recent developments in statistical prediction of seasonal Atlantic basin tropical cyclone activity. Tellus, 59A , 511518.

    • Search Google Scholar
    • Export Citation
  • Knutson, T. R., , and K. M. Weickmann, 1987: 30-60 day atmospheric oscillations: Composite life cycles of convection and circulation anomalies. Mon. Wea. Rev., 115 , 14071436.

    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., , K. R. Knapp, , D. J. Vimont, , R. J. Murnane, , and B. A. Harper, 2007: A globally consistent reanalysis of hurricane variability and trends. Geophys. Res. Lett., 34 , L04815. doi:10.1029/2006GL028836.

    • Search Google Scholar
    • Export Citation
  • Kutzbach, J. E., 1967: Empirical eigenvectors of sea-level pressure, surface temperature and precipitation complexes over North America. J. Appl. Meteor., 6 , 791802.

    • Search Google Scholar
    • Export Citation
  • Landsea, C., 2007: Counting Atlantic tropical cyclones back to 1900. Eos, Trans. Amer. Geophys. Union, 88 , 197202.

  • Leroy, A., , and M. C. Wheeler, 2008: Statistical prediction of weekly tropical cyclone activity in the Southern Hemisphere. Mon. Wea. Rev., 136 , 36373654.

    • Search Google Scholar
    • Export Citation
  • Leslie, L. M., , K. Fraedrich, , and T. Glowacki, 1989: Forecasting the skill of a regional numerical weather prediction model. Mon. Wea. Rev., 117 , 550557.

    • Search Google Scholar
    • Export Citation
  • Liebmann, B., , H. H. Hendon, , and J. D. Glick, 1994: The relationship between tropical cyclones of the western Pacific and Indian Oceans and the Madden–Julian Oscillation. J. Meteor. Soc. Japan, 72 , 401411.

    • Search Google Scholar
    • Export Citation
  • Lo, F., , and H. H. Hendon, 2000: Empirical extended-range prediction of the Madden–Julian oscillation. Mon. Wea. Rev., 128 , 25282543.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., , and P. R. Julian, 1971: Detection of a 40–50-day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci., 28 , 702708.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., , and P. R. Julian, 1972: Description of global-scale circulation cells in the tropics with a 40–50 day period. J. Atmos. Sci., 29 , 11091123.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., , and P. R. Julian, 1994: Observations of the 40–50-day tropical oscillation—A review. Mon. Wea. Rev., 122 , 814837.

  • Maloney, E. D., , and D. L. Hartmann, 2000a: Modulation of eastern North Pacific hurricanes by the Madden–Julian oscillation. J. Climate, 13 , 14511460.

    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., , and D. L. Hartmann, 2000b: Modulation of hurricane activity in the Gulf of Mexico by the Madden-Julian Oscillation. Science, 287 , 20022004.

    • Search Google Scholar
    • Export Citation
  • Mancuso, R. L., 1967: A numerical procedure for computing fields of stream function and velocity potential. J. Appl. Meteor., 6 , 9941001.

    • Search Google Scholar
    • Export Citation
  • Mann, M. E., , and K. A. Emanuel, 2006: Atlantic hurricane trends linked to climate change. Eos, Trans. Amer. Geophys. Union, 87 , 233241.

    • Search Google Scholar
    • Export Citation
  • Matthews, A. J., 2000: Propagation mechanisms for the Madden-Julian Oscillation. Quart. J. Roy. Meteor. Soc., 126 , 26372651.

  • McBride, J. L., 1981: Observational analysis of tropical cyclone formation. Part I: Basic description of data sets. J. Atmos. Sci., 38 , 11171131.

    • Search Google Scholar
    • Export Citation
  • Milliff, R. F., , and R. A. Madden, 1996: The existence and vertical structure of fast, eastward-moving disturbances in the equatorial troposphere. J. Atmos. Sci., 53 , 586597.

    • Search Google Scholar
    • Export Citation
  • Mo, K. C., 2000: Intraseasonal modulation of summer precipitation over North America. Mon. Wea. Rev., 128 , 14901505.

  • Mo, K. C., 2001: Adaptive filtering and prediction of intraseasonal oscillations. Mon. Wea. Rev., 129 , 802817.

  • Molinari, J., , and D. Vollaro, 2000: Planetary- and synoptic-scale influences on eastern Pacific tropical cyclogenesis. Mon. Wea. Rev., 128 , 32963307.

    • Search Google Scholar
    • Export Citation
  • Molinari, J., , D. Knight, , M. Dickinson, , D. Vollaro, , and S. Skubis, 1997: Potential vorticity, easterly waves, and tropical cyclogenesis. Mon. Wea. Rev., 125 , 26992708.

    • Search Google Scholar
    • Export Citation
  • Nakazawa, T., 1986: Mean features of 30–60 day variations as inferred from 8-year OLR data. J. Meteor. Soc. Japan, 64 , 777786.

  • Nakazawa, T., 1988: Tropical super cloud clusters within intraseasonal variations over the western Pacific. J. Meteor. Soc. Japan, 66 , 823839.

    • Search Google Scholar
    • Export Citation
  • Powell, M. D., , and S. D. Aberson, 2001: Accuracy of United States tropical cyclone landfall forecasts in the Atlantic basin (1976–2000). Bull. Amer. Meteor. Soc., 82 , 27492768.

    • Search Google Scholar
    • Export Citation
  • Quan, X. W., , P. J. Webster, , A. M. Moore, , and H. R. Chang, 2004: Seasonality in SST-forced atmospheric short-term climate predictability. J. Climate, 17 , 30903108.

    • Search Google Scholar
    • Export Citation
  • Ramsay, H., , L. M. Leslie, , P. J. Lamb, , M. B. Richman, , and M. Leplastrier, 2008: Interannual variability of tropical cyclones in the Australian region: Role of large-scale environment. J. Climate, 21 , 10831103.

    • Search Google Scholar
    • Export Citation
  • Rasmusson, E. M., , and K. Mo, 1993: Linkages between 200-mb tropical and extratropical circulation anomalies during the 1986-1989 ENSO cycle. J. Climate, 6 , 595616.

    • Search Google Scholar
    • Export Citation
  • Reichler, T., , and J. O. Roads, 2005: Long-range predictability in the tropics. Part II: 30–60-day variability. J. Climate, 18 , 634650.

    • Search Google Scholar
    • Export Citation
  • Sheets, R. H., 1990: The National Hurricane Center: Past, present and future. Wea. Forecasting, 5 , 185232.

  • Torrence, C., , and G. P. Compo, 1998: A practical guide to wavelet analysis. Bull. Amer. Meteor. Soc., 79 , 6178.

  • Vitart, F., , S. Woolnough, , M. A. Balmaseda, , and A. M. Tompkins, 2007: Monthly forecast of the Madden–Julian oscillation using a coupled GCM. Mon. Wea. Rev., 135 , 27002715.

    • Search Google Scholar
    • Export Citation
  • von Storch, H., , and A. Smallegange, 1991: The phase of the 30- to 60-day oscillation and the genesis of tropical cyclones in the western Pacific. Max-Planck-Institut für Meteorologie, Rep. 66, 22 pp.

    • Search Google Scholar
    • Export Citation
  • Weare, B. C., , and J. S. Nasstrom, 1982: Examples of extended empirical orthogonal function analysis. Mon. Wea. Rev., 110 , 481485.

  • Webster, P. J., , G. J. Holland, , J. A. Curry, , and H-R. Chang, 2005: Changes in tropical cyclone number, duration, and intensity in a warming environment. Science, 309 , 18441846.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M., , and K. M. Weickmann, 2001: Real-time monitoring and prediction of modes of coherent synoptic to intraseasonal tropical variability. Mon. Wea. Rev., 129 , 26772694.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M., , and H. H. Hendon, 2004: An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. Mon. Wea. Rev., 132 , 19171932.

    • Search Google Scholar
    • Export Citation
  • Wu, L., , F. He, , Z. Liu, , and C. Li, 2007: Atmospheric teleconnections of tropical Atlantic variability: Interhemispheric, tropical-extratropical, and cross-basin interactions. J. Climate, 20 , 856870.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., 2005: Madden-Julian oscillation. Rev. Geophys., 43 , RG2003. doi:10.1029/2004RG000158.

  • Zhou, S., , and A. J. Miller, 2005: The interaction of the Madden–Julian oscillation and the Arctic Oscillation. J. Climate, 18 , 143159.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 101 101 12
PDF Downloads 46 46 3

Links between Tropical Cyclone Activity and Madden–Julian Oscillation Phase in the North Atlantic and Northeast Pacific Basins

View More View Less
  • 1 School of Meteorology, University of Oklahoma, Norman, Oklahoma, and Department of Geophysics, Faculty of Physical Sciences and Mathematics, University of Chile, Santiago, Chile
  • | 2 School of Meteorology, University of Oklahoma, Norman, Oklahoma
© Get Permissions
Restricted access

Abstract

The leading intraseasonal mode of atmospheric and oceanic variability, the Madden–Julian oscillation (MJO), influences tropical and extratropical sea level pressure, temperature, divergent and rotational wind components, moisture, and deep convection. As a 40- to 50-day oscillation, the MJO is also known to influence tropical phenomena, including tropical cyclone (TC) activity in various TC basins. The links between the MJO and multiple measures of TC activity, including genesis, landfall, and an integrative accumulated cyclone energy (ACE) index, were quantified for multiple TC-formation basins across the Western Hemisphere, including the North Atlantic and northeast Pacific Ocean and subbasins, for the period 1978–2006. Using this relatively long (29 yr) TC dataset and employing an upper-tropospheric MJO diagnostic that is physically meaningful over the entire Western Hemisphere, this study extends existing research on the relationships between the MJO and TCs. The NOAA Climate Prediction Center’s operational MJO index, derived from 200-hPa velocity potential data, was divided into three phases. Relative frequencies of the MJO phases were compared with observed levels of TC activity using a binomial distribution hypothesis test. The MJO was found to statistically significantly modulate the frequency of TC genesis, intensification, and landfall in the nine TC basins studied. For example, when an MJO index was large and positive at 120°W, hurricanes and intense hurricanes were 4 times as likely to make landfall in the North Atlantic. This modulation of TC activity, including landfall patterns in the North Atlantic, was physically linked to the upper-atmospheric response to the eastward-propagating MJO and is evident as a dipole of TC activity between Pacific and Atlantic subbasins.

Corresponding author address: Bradford Barrett, Department of Geophysics, University of Chile, Blanco Encalada 2002, Santiago, Chile. Email: bbarrett@dgf.uchile.cl

Abstract

The leading intraseasonal mode of atmospheric and oceanic variability, the Madden–Julian oscillation (MJO), influences tropical and extratropical sea level pressure, temperature, divergent and rotational wind components, moisture, and deep convection. As a 40- to 50-day oscillation, the MJO is also known to influence tropical phenomena, including tropical cyclone (TC) activity in various TC basins. The links between the MJO and multiple measures of TC activity, including genesis, landfall, and an integrative accumulated cyclone energy (ACE) index, were quantified for multiple TC-formation basins across the Western Hemisphere, including the North Atlantic and northeast Pacific Ocean and subbasins, for the period 1978–2006. Using this relatively long (29 yr) TC dataset and employing an upper-tropospheric MJO diagnostic that is physically meaningful over the entire Western Hemisphere, this study extends existing research on the relationships between the MJO and TCs. The NOAA Climate Prediction Center’s operational MJO index, derived from 200-hPa velocity potential data, was divided into three phases. Relative frequencies of the MJO phases were compared with observed levels of TC activity using a binomial distribution hypothesis test. The MJO was found to statistically significantly modulate the frequency of TC genesis, intensification, and landfall in the nine TC basins studied. For example, when an MJO index was large and positive at 120°W, hurricanes and intense hurricanes were 4 times as likely to make landfall in the North Atlantic. This modulation of TC activity, including landfall patterns in the North Atlantic, was physically linked to the upper-atmospheric response to the eastward-propagating MJO and is evident as a dipole of TC activity between Pacific and Atlantic subbasins.

Corresponding author address: Bradford Barrett, Department of Geophysics, University of Chile, Blanco Encalada 2002, Santiago, Chile. Email: bbarrett@dgf.uchile.cl

Save