• Barkmeijer, J., , M. van Gijzen, , and F. Bouttier, 1998: Singular vectors and estimates of the analysis error covariance metric. Quart. J. Roy. Meteor. Soc., 124 , 16951713.

    • Search Google Scholar
    • Export Citation
  • Barkmeijer, J., , R. Buizza, , and T. N. Palmer, 1999: 3D-Var Hessian singular vectors and their potential use in the ECMWF ensemble prediction system. Quart. J. Roy. Meteor. Soc., 125 , 23332351.

    • Search Google Scholar
    • Export Citation
  • Barkmeijer, J., , R. Buizza, , T. N. Palmer, , K. Puri, , and J-F. Mahfouf, 2001: Tropical singular vectors computed with linearized diabatic physics. Quart. J. Roy. Meteor. Soc., 127 , 685708.

    • Search Google Scholar
    • Export Citation
  • Bergot, T., 1999: Adaptive observations during FASTEX: A systematic survey of upstream flights. Quart. J. Roy. Meteor. Soc., 125 , 32713298.

    • Search Google Scholar
    • Export Citation
  • Bergot, T., , G. Hello, , A. Joly, , and S. Malardel, 1999: Adaptive observations: A feasibility study. Mon. Wea. Rev., 127 , 743765.

  • Buizza, R., 1994: Localization of optimal perturbations using a projection operator. Quart. J. Roy. Meteor. Soc., 120 , 16471681.

  • Buizza, R., , and T. N. Palmer, 1995: The singular-vector structure of the atmospheric global circulation. J. Atmos. Sci., 52 , 14341456.

    • Search Google Scholar
    • Export Citation
  • Buizza, R., , and A. Montani, 1999: Targeting observations using singular vectors. J. Atmos. Sci., 56 , 29652985.

  • Caron, J-F., , M. K. Yau, , S. Laroche, , and P. Zwack, 2007: The characteristics of key analysis errors. Part II: The importance of the PV corrections and the impact of balance. Mon. Wea. Rev., 135 , 267280.

    • Search Google Scholar
    • Export Citation
  • Coutinho, M. M., , B. J. Hoskins, , and R. Buizza, 2004: The influence of physical processes on extratropical singular vectors. J. Atmos. Sci., 61 , 195209.

    • Search Google Scholar
    • Export Citation
  • Ehrendorfer, M., , and R. M. Errico, 1995: Mesoscale predictability and the spectrum of optimal perturbations. J. Atmos. Sci., 52 , 34753500.

    • Search Google Scholar
    • Export Citation
  • Ehrendorfer, M., , and J. J. Tribbia, 1997: Optimal prediction of forecast error covariances through singular vectors. J. Atmos. Sci., 54 , 286313.

    • Search Google Scholar
    • Export Citation
  • Ehrendorfer, M., , R. M. Errico, , and K. D. Raeder, 1999: Singular-vector perturbation growth in a primitive equation model with moist physics. J. Atmos. Sci., 56 , 16271648.

    • Search Google Scholar
    • Export Citation
  • Errico, R. M., , and K. D. Raeder, 1999: An examination of the accuracy of the linearization of a mesoscale model with moist physics. Quart. J. Roy. Meteor. Soc., 125 , 169195.

    • Search Google Scholar
    • Export Citation
  • Errico, R. M., , K. D. Raeder, , and L. Fillion, 2003: Examination of the sensitivity of forecast precipitation rates with respect to possible perturbations of initial conditions. Tellus, 55A , 88105.

    • Search Google Scholar
    • Export Citation
  • Errico, R. M., , K. D. Raeder, , and M. Ehrendorfer, 2004: Singular vectors for moisture-measuring norms. Quart. J. Roy. Meteor. Soc., 130 , 963987.

    • Search Google Scholar
    • Export Citation
  • Gelaro, R., , R. H. Langland, , G. D. Rohaly, , and T. E. Rosmond, 1999: An assessment of the singular-vector approach to targeted observing using the FASTEX dataset. Quart. J. Roy. Meteor. Soc., 125 , 32993327.

    • Search Google Scholar
    • Export Citation
  • Gelaro, R., , T. E. Rosmond, , and R. Daley, 2002: Singular vector calculations with an analysis error variance metric. Mon. Wea. Rev., 130 , 11661186.

    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., , C. Snyder, , and J. S. Whitaker, 2003: Ensemble forecasts and the properties of flow-dependent analysis-error covariance singular vectors. Mon. Wea. Rev., 131 , 17411758.

    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., , R. Buizza, , and T. N. Palmer, 1995: Singular vectors: The effect of spatial scale on linear growth of disturbances. J. Atmos. Sci., 52 , 38853894.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., , and M. M. Coutinho, 2005: Moist singular vectors and the predictability of some high impact European cyclones. Quart. J. Roy. Meteor. Soc., 131 , 581601.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., , R. Buizza, , and J. Badger, 2000: The nature of singular vector growth and structure. Quart. J. Roy. Meteor. Soc., 126 , 15651580.

    • Search Google Scholar
    • Export Citation
  • Isaksen, L., , M. Fisher, , E. Andersson, , and J. Barkmeijer, 2005: The structure and realism of sensitivity perturbations and their interpretation as ‘Key Analysis Errors.’. Quart. J. Roy. Meteor. Soc., 131 , 30533078.

    • Search Google Scholar
    • Export Citation
  • Kanamitsu, M., , W. Ebisuzaki, , J. Woollen, , S-K. Yang, , J. J. Hnilo, , M. Fiorino, , and G. L. Potter, 2002: NCEP-DOE AMIP-II Reanalysis (R-2). Bull. Amer. Meteor. Soc., 83 , 16311643.

    • Search Google Scholar
    • Export Citation
  • Kim, H. M., 2003: A computation of adjoint-based sensitivities in a quasigeostrophic model. Kor. J. Atmos. Sci., 6 (2) 7183.

  • Kim, H. M., , and M. C. Morgan, 2002: Dependence of singular vector structure and evolution on the choice of norm. J. Atmos. Sci., 59 , 30993116.

    • Search Google Scholar
    • Export Citation
  • Kim, H. M., , and B-J. Jung, 2009: Singular vector structure and evolution of a recurving tropical cyclone. Mon. Wea. Rev., 137 , 505524.

    • Search Google Scholar
    • Export Citation
  • Kim, H. M., , M. C. Morgan, , and R. E. Morss, 2004: Evolution of analysis error and adjoint-based sensitivities: Implications for adaptive observations. J. Atmos. Sci., 61 , 795812.

    • Search Google Scholar
    • Export Citation
  • Kleist, D. T., , and M. C. Morgan, 2005: Interpretation of the structure and evolution of adjoint-derived forecast sensitivity gradients. Mon. Wea. Rev., 133 , 466484.

    • Search Google Scholar
    • Export Citation
  • Langland, R. H., , R. Gelaro, , G. D. Rohaly, , and M. A. Shapiro, 1999: Targeted observations in FASTEX: Adjoint based targeting procedures and data impact experiments in IOP17 and IOP18. Quart. J. Roy. Meteor. Soc., 125 , 32413270.

    • Search Google Scholar
    • Export Citation
  • Mahfouf, J-F., 1999: Influence of physical processes on the tangent-linear approximation. Tellus, 51A , 147166.

  • Majumdar, S. J., , S. D. Aberson, , C. H. Bishop, , R. Buizza, , M. S. Peng, , and C. A. Reynolds, 2006: A comparison of adaptive observing guidance for Atlantic tropical cyclones. Mon. Wea. Rev., 134 , 23542372.

    • Search Google Scholar
    • Export Citation
  • Montani, A., , A. J. Thorpe, , R. Buizza, , and P. Unden, 1999: Forecast skill of the ECMWF model using targeted observations during FASTEX. Quart. J. Roy. Meteor. Soc., 125 , 32193240.

    • Search Google Scholar
    • Export Citation
  • Morgan, M. C., 2001: A potential vorticity and wave activity diagnosis of optimal perturbation evolution. J. Atmos. Sci., 58 , 25182544.

    • Search Google Scholar
    • Export Citation
  • Mukougawa, H., , and T. Ikeda, 1994: Optimal excitation of baroclinic waves in the Eady model. J. Meteor. Soc. Japan, 72 , 499513.

  • Palmer, T. N., , R. Gelaro, , J. Barkmeijer, , and R. Buizza, 1998: Singular vectors, metrics and adaptive observations. J. Atmos. Sci., 55 , 633653.

    • Search Google Scholar
    • Export Citation
  • Peng, M. S., , and C. A. Reynolds, 2005: Double trouble for typhoon forecasters. Geophys. Res. Lett., 32 , L02810. doi:10.1029/2004GL021680.

    • Search Google Scholar
    • Export Citation
  • Peng, M. S., , and C. A. Reynolds, 2006: Sensitivity of tropical cyclone forecasts as revealed by singular vectors. J. Atmos. Sci., 63 , 25082528.

    • Search Google Scholar
    • Export Citation
  • Petersen, G. N., , and A. J. Thorpe, 2007: The impact on weather forecasts of targeted observations during A-TReC. Quart. J. Roy. Meteor. Soc., 133 , 417431.

    • Search Google Scholar
    • Export Citation
  • Puri, K., , J. Barkmeijer, , and T. N. Palmer, 2001: Ensemble prediction of tropical cyclones using targeted diabatic singular vectors. Quart. J. Roy. Meteor. Soc., 127 , 709731.

    • Search Google Scholar
    • Export Citation
  • Rabier, F., and Coauthors, 2008: An update on THORPEX-related research in data assimilation and observing strategies. Nonlinear Processes Geophys., 15 , 8194.

    • Search Google Scholar
    • Export Citation
  • Reynolds, C. A., , M. S. Peng, , S. J. Majumdar, , S. D. Aberson, , C. H. Bishop, , and R. Buizza, 2007: Interpretation of adaptive observing guidance for Atlantic tropical cyclones. Mon. Wea. Rev., 135 , 40064029.

    • Search Google Scholar
    • Export Citation
  • Vukicevic, T., , and R. M. Errico, 1993: Linearization and adjoint of parameterized moist diabatic processes. Tellus, 45A , 493510.

  • Wu, C. C., , J-H. Chen, , P-H. Lin, , and K-H. Chou, 2007: Targeted observations of tropical cyclone movement based on the adjoint-derived sensitivity steering vector. J. Atmos. Sci., 64 , 26112626.

    • Search Google Scholar
    • Export Citation
  • Zou, X., , F. Vandenberghe, , M. Pondeca, , and Y-H. Kuo, 1997: Introduction to adjoint techniques and the MM5 adjoint modeling system. NCAR Tech. Note NCAR/TN-435STR, 110 pp.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 54 54 5
PDF Downloads 9 9 3

Influence of Moist Physics and Norms on Singular Vectors for a Tropical Cyclone

View More View Less
  • 1 Atmospheric Predictability and Data Assimilation Laboratory, Department of Atmospheric Sciences, Yonsei University, Seoul, South Korea
© Get Permissions
Restricted access

Abstract

In this study, the structures and growth rates of singular vectors (SVs) for Typhoon Usagi were investigated using different moist physics and norms. The fifth-generation Pennsylvania State University–National Center for Atmospheric Research Mesoscale Model (MM5) and its tangent linear and adjoint models with a Lanczos algorithm were used to calculate SVs over a 36-h period. The moist physics used for linear (i.e., tangent linear and adjoint model) integrations is large-scale precipitation, and the norms used are dry and moist total energy (TE) norms. Overall, moist physics in linear integrations and a moist TE norm increase the growth rates of SVs and cause smaller horizontal structures and vertical distributions closer to the lower boundary. With a dry TE norm, the SV energy distributions show similar (dissimilar) large- (small-) scale horizontal SV structures for experiments, regardless of physics. The SVs with moist linear physics and a moist TE norm have maximum horizontal energy structures near the typhoon center. With a small weighting on the moisture term in the moist TE norm, both the remote and nearby influences on the TC are indicated by the horizontal SV energy distributions. The kinetic energy shows the largest contributions to the vertical SV TE distributions in most of the experiments, except for the largest moisture (potential energy) contributions to the SV TE at the final (initial) time in the moist TE norm (dry and weighted moist TE norms at uppermost levels). In contrast, the SV vorticity distributions show more consistent structures among experiments with different linear physics and norms, implying that, in terms of the rotational component of the wind field, the SVs are not sensitive to the choice of moist physics and norms. Given large-scale precipitation as the linear moist physics, the SV energy structures and growth rate with a moist TE norm show the largest difference when compared with those with other norms.

Corresponding author address: Hyun Mee Kim, Department of Atmospheric Sciences, Yonsei University, Shinchon-dong 134, Seodaemun-ku, Seoul 120-749, South Korea. Email: khm@yonsei.ac.kr

This article included in the Targeted Observations, Data Assimilation, and Tropical Cyclone Predictability special collection.

Abstract

In this study, the structures and growth rates of singular vectors (SVs) for Typhoon Usagi were investigated using different moist physics and norms. The fifth-generation Pennsylvania State University–National Center for Atmospheric Research Mesoscale Model (MM5) and its tangent linear and adjoint models with a Lanczos algorithm were used to calculate SVs over a 36-h period. The moist physics used for linear (i.e., tangent linear and adjoint model) integrations is large-scale precipitation, and the norms used are dry and moist total energy (TE) norms. Overall, moist physics in linear integrations and a moist TE norm increase the growth rates of SVs and cause smaller horizontal structures and vertical distributions closer to the lower boundary. With a dry TE norm, the SV energy distributions show similar (dissimilar) large- (small-) scale horizontal SV structures for experiments, regardless of physics. The SVs with moist linear physics and a moist TE norm have maximum horizontal energy structures near the typhoon center. With a small weighting on the moisture term in the moist TE norm, both the remote and nearby influences on the TC are indicated by the horizontal SV energy distributions. The kinetic energy shows the largest contributions to the vertical SV TE distributions in most of the experiments, except for the largest moisture (potential energy) contributions to the SV TE at the final (initial) time in the moist TE norm (dry and weighted moist TE norms at uppermost levels). In contrast, the SV vorticity distributions show more consistent structures among experiments with different linear physics and norms, implying that, in terms of the rotational component of the wind field, the SVs are not sensitive to the choice of moist physics and norms. Given large-scale precipitation as the linear moist physics, the SV energy structures and growth rate with a moist TE norm show the largest difference when compared with those with other norms.

Corresponding author address: Hyun Mee Kim, Department of Atmospheric Sciences, Yonsei University, Shinchon-dong 134, Seodaemun-ku, Seoul 120-749, South Korea. Email: khm@yonsei.ac.kr

This article included in the Targeted Observations, Data Assimilation, and Tropical Cyclone Predictability special collection.

Save