• Arakawa, A., 2004: The cumulus parameterization problem: Past, present, and future. J. Climate, 17 , 24932525.

  • Arakawa, A., and W. H. Schubert, 1974: Interaction of a cumulus cloud ensemble with the large-scale environment, Part I. J. Atmos. Sci., 31 , 674701.

    • Search Google Scholar
    • Export Citation
  • Arakawa, A., and V. R. Lamb, 1977: Computational design of the basic dynamical process of the UCLA general circulation model. Methods Comput. Phys., 17 , 173265.

    • Search Google Scholar
    • Export Citation
  • Arakawa, A., and M. J. Suarez, 1983: Vertical differencing of the primitive equations in sigma-coordinates. Mon. Wea. Rev., 111 , 3445.

    • Search Google Scholar
    • Export Citation
  • Bastable, H. G., W. J. Shuttleworth, R. L. G. Dallarosa, G. Fisch, and C. A. Nobre, 1993: Observations of climate, albedo, and surface radiation over cleared and undisturbed Amazonian forest. Int. J. Climatol., 13 , 783796.

    • Search Google Scholar
    • Export Citation
  • Bechtold, P., C. Fravalo, and J. P. Pinty, 1992: A model of marine boundary-layer cloudiness for mesoscale applications. J. Atmos. Sci., 49 , 17231744.

    • Search Google Scholar
    • Export Citation
  • Beljaars, A. C. M., and A. A. M. Holtslag, 1991: Flux parameterization and land surfaces in atmospheric models. J. Appl. Meteor., 30 , 327341.

    • Search Google Scholar
    • Export Citation
  • Boville, B. A., 1991: Sensitivity of simulated climate to model resolution. J. Climate, 4 , 469485.

  • Breidenthal, R. E., 1992: Entrainment at thin stratified interfaces: The effects of Smith, Richardson and Reynolds numbers. Phys. Fluids, 4A , 21412144.

    • Search Google Scholar
    • Export Citation
  • Breidenthal, R. E., and M. B. Baker, 1985: Convection and entrainment across stratified interfaces. J. Geophys. Res., 90D , 1305513062.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., and Coauthors, 2004: The EPIC 2001 stratocumulus study. Bull. Amer. Meteor. Soc., 85 , 967977.

  • Cazes Boezio, G., C. S. Konor, A. Arakawa, C. R. Mechoso, and D. Menemenlis, 2005: Coupled simulations obtained with the UCLA AGCM with a new PBL parameterization and the MIT global OGCM. Preprints, 17th Conf. on Climate Variability, Cambridge, MA, Amer. Meteor. Soc., JP1.16.

    • Search Google Scholar
    • Export Citation
  • Da Silva, A., C. Young, and S. Levitus, 1994: Atlas of surface marine data, volume 1: Algorithms and procedures. U.S. Department of Commerce, NOAA, NESDIS, Tech. Rep. 6, 83 pp.

    • Search Google Scholar
    • Export Citation
  • Deardorff, J. W., 1972: Parameterization of the planetary boundary layer use in general circulation models. Mon. Wea. Rev., 100 , 93106.

    • Search Google Scholar
    • Export Citation
  • Deardorff, J. W., 1980: Cloud top entrainment instability. J. Atmos. Sci., 37 , 329350.

  • Del Genio, A., M-S. Yao, W. Kovari, and K. K-W. Lo, 1996: A prognostic cloud water parameterization for global climate models. J. Climate, 9 , 270304.

    • Search Google Scholar
    • Export Citation
  • Derbyshire, S. H., 1990: Boundary-layer decoupling over cold surfaces as a physical boundary-instability. Bound.-Layer Meteor., 82 , 297325.

    • Search Google Scholar
    • Export Citation
  • Dorman, J. L., and P. J. Sellers, 1989: A global climatology of albedo, roughness length and stomatal resistance for atmospheric general circulation models as represented by the Simple Biosphere model (SiB). J. Appl. Meteor., 28 , 833855.

    • Search Google Scholar
    • Export Citation
  • Duynkerke, P. G., and P. Hignett, 1993: Simulation of diurnal variation in a stratocumulus-capped marine boundary layer during FIRE. Mon. Wea. Rev., 121 , 32913300.

    • Search Google Scholar
    • Export Citation
  • Grenier, H., and C. S. Bretherton, 2001: A moist PBL parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Mon. Wea. Rev., 129 , 357377.

    • Search Google Scholar
    • Export Citation
  • Harshvardhan, D. A. Randall, and T. G. Corsetti, 1987: A fast radiation parameterization for atmospheric circulation models. J. Geophys. Res., 92 , 10091016.

    • Search Google Scholar
    • Export Citation
  • Harshvardhan, D. A. Randall, T. G. Corsetti, and D. A. Dazlich, 1989: Earth radiation budget and cloudiness simulations with a general circulation model. J. Atmos. Sci., 46 , 19221942.

    • Search Google Scholar
    • Export Citation
  • Holtslag, A. A. M., 2003: GABLS initiates intercomparison for stable boundary layer case. GEWEX News, Vol. 13, No. 2, International GEWEX Project Office, Silver Spring, MD, 7–8.

    • Search Google Scholar
    • Export Citation
  • Holtslag, A. A. M., and B. A. Boville, 1993: Local versus nonlocal boundary-layer diffusion in a global model. J. Climate, 6 , 18251842.

    • Search Google Scholar
    • Export Citation
  • Holtslag, A. A. M., E. I. F. de Bruijn, and H-L. Pan, 1990: A high-resolution air mass transformation model for short-range weather forecasting. Mon. Wea. Rev., 118 , 15611575.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77 , 437471.

  • Klein, S. A., and D. L. Hartmann, 1993: The seasonal cycle of low stratiform clouds. J. Climate, 6 , 15871606.

  • Konor, C. S., and A. Arakawa, 2005: Incorporation of moist processes and a PBL parameterization into the generalized vertical coordinate model. Tech. Rep. 765, Colorado State University, 75 pp. [Available online from http://kiwi.atmos.colostate.edu/pubs/PBL_tech_report_CSU_2005.pdf.].

    • Search Google Scholar
    • Export Citation
  • Konor, C. S., and A. Arakawa, 2008: Incorporation of a PBL parameterization into a general circulation model. Updated Tech. Rep. 765, Department of Atmospheric Science, Colorado State University, 70 pp. [Available from http://kiwi.atmos.colostate.edu/pubs/New_PBL_Tech_Rep_sigma_GCM.pdf.].

    • Search Google Scholar
    • Export Citation
  • Konor, C. S., G. Cazes Boezio, C. R. Mechoso, and A. Arakawa, 2004: Evaluation of a new PBL parameterization with emphasis in surface fluxes. Preprints, 13th Conf. on Interactions of the Sea and Atmosphere. Portland, ME, Amer. Meteor. Soc., 2.11.

    • Search Google Scholar
    • Export Citation
  • Krasner, R. D., 1993: Further development and testing of a second-order bulk boundary layer model. M.S. thesis, Dept. of Atmospheric Science, Colorado State University, 131 pp.

  • LeTreut, H., and Z-H. Li, 1991: Sensitivity of an atmospheric general circulation model to prescribed SST changes: Feedback effects associated with the simulation of cloud optical properties. Climate Dyn., 5 , 175187.

    • Search Google Scholar
    • Export Citation
  • Lilly, D. K., 1968: Models of cloud-topped mixed layers under a strong inversion. Quart. J. Roy. Meteor. Soc., 94 , 292309.

  • Lilly, D. K., 2002: Entrainment into mixed layers. Part I: A new closure. J. Atmos. Sci., 59 , 33533361.

  • Lin, X., D. A. Randall, and L. D. Fowler, 2000: Diurnal variability of the hydrologic cycle and radiative fluxes: Comparisons between observations and a GCM. J. Climate, 13 , 41594179.

    • Search Google Scholar
    • Export Citation
  • Lock, A. P., 1998: The parameterization of entrainment in cloudy boundary layers. Quart. J. Roy. Meteor. Soc., 124 , 27292753.

  • Lock, A. P., A. R. Brown, M. R. Bush, G. M. Martin, and R. N. B. Smith, 2000: A new boundary layer mixing scheme. Part I: Scheme description and single-column model. Mon. Wea. Rev., 128 , 31873199.

    • Search Google Scholar
    • Export Citation
  • Louis, J. F., 1979: A parametric model of vertical eddy fluxes in the atmosphere. Bound.-Layer Meteor., 17 , 187202.

  • Louis, J. F., M. Tiedke, and J. F. Geleyn, 1982: A short history of the PBL parameterization at ECMWF. Proc. ECMWF Workshop on Boundary-Layer Parameterization, ECMWF, Reading, United Kingdom, 59–79.

    • Search Google Scholar
    • Export Citation
  • Ma, C-C., C. R. Mechoso, A. W. Robertson, and A. Arakawa, 1996: Peruvian stratus clouds and the tropical Pacific circulation: A coupled ocean–atmosphere GCM study. J. Climate, 9 , 16351645.

    • Search Google Scholar
    • Export Citation
  • Machado, L. A. T., H. Laurent, and A. A. Lima, 2002: Diurnal march of the convection observed during TRMM-WETAMC/LBA. J. Geophys. Res., 107D , 80648077.

    • Search Google Scholar
    • Export Citation
  • Mahrt, L., 1999: Stratified atmospheric boundary layers. Bound.-Layer Meteor., 90 , 375396.

  • Martin, G. M., M. R. Bush, A. R. Brown, A. P. Lock, and R. N. B. Smith, 2000: A new boundary layer mixing scheme. Part II: Tests in climate and mesoscale models. Mon. Wea. Rev., 128 , 32003217.

    • Search Google Scholar
    • Export Citation
  • Mechoso, C. R., J-Y. Yu, and A. Arakawa, 2000: A coupled GCM pilgrimage: From climate catastrophe to ENSO simulations. General Circulation Model Development: Past, Present and Future. Proceedings of a Symposium in Honor of Professor Akio Arakawa. D. A. Randall, Ed., Academic Press, 539–575.

    • Search Google Scholar
    • Export Citation
  • Mellor, G. L., and T. Yamada, 1982: Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys. Space Phys., 20 , 851875.

    • Search Google Scholar
    • Export Citation
  • Moeng, C-H., 2000: Entrainment rate, cloud fraction, and liquid water path of PBL stratocumulus clouds. J. Atmos. Sci., 57 , 36273643.

    • Search Google Scholar
    • Export Citation
  • Moeng, C-H., and P. P. Sullivan, 1994: A comparison of shear- and buoyancy-driven planetary boundary layer flows. J. Atmos. Sci., 51 , 9991022.

    • Search Google Scholar
    • Export Citation
  • Pan, D. M., and D. A. Randall, 1998: A cumulus parameterization with a prognostic closure. Quart. J. Roy. Meteor. Soc., 124 , 949981.

  • Randall, D. A., 1976: The interaction of the planetary boundary layer with large scale circulations. Ph.D. thesis, University of California, Los Angeles, 247 pp.

    • Search Google Scholar
    • Export Citation
  • Randall, D. A., 1980a: Conditional instability of the first kind upside-down. J. Atmos. Sci., 37 , 125130.

  • Randall, D. A., 1980b: Entrainment into a stratocumulus layer with disturbed radiative cooling. J. Atmos. Sci., 37 , 148159.

  • Randall, D. A., and W. H. Schubert, 2004: Dreams of a stratocumulus sleeper. Atmospheric Turbulence and Mesoscale Meteorology, Scientific Research Inspired by Doug Lily, E. Fedorovich, R. Rotuno, and B. Stevens, Eds., Cambridge University Press, 95–114.

    • Search Google Scholar
    • Export Citation
  • Randall, D. A., Harshvardhan, D. A. Dazlich, and T. G. Corsetti, 1989: Interactions among radiation, convective, and large-scale dynamics in a general circulation model. J. Atmos. Sci., 46 , 19431970.

    • Search Google Scholar
    • Export Citation
  • Randall, D. A., Q. Shao, and C-H. Moeng, 1992: A second-order bulk boundary layer model. J. Atmos. Sci., 49 , 19031923.

  • Rayner, N. A., C. K. Folland, D. E. Parker, and E. B. Horton, 1995: A new global sea-ice and sea surface temperature (GISST) data set for 1903–1994 for forcing climate models. Hadley Centre Internal Note 69, Met Office, 14 pp.

    • Search Google Scholar
    • Export Citation
  • Siems, S. T., C. S. Bretherton, M. B. Baker, S. Shy, and R. E. Breidenthal, 1990: Buoyancy reversal and cloud top instability. Quart. J. Roy. Meteor. Soc., 116 , 705739.

    • Search Google Scholar
    • Export Citation
  • Slingo, A., S. Nicholls, and J. Schmetz, 1982: Aircraft observations of marine stratocumulus during JASIN. Quart. J. Roy. Meteor. Soc., 108 , 833856.

    • Search Google Scholar
    • Export Citation
  • Smith, R. N. B., 1990: A scheme for predicting layer clouds and their water content in a general circulation model. Quart. J. Roy. Meteor. Soc., 116 , 435460.

    • Search Google Scholar
    • Export Citation
  • Soares, P. M. M., P. M. A. Miranda, A. P. Siebesma, and J. Teixeira, 2004: An eddy-diffusivity/mass-flux parameterization for dry and shallow cumulus convection. Quart. J. Roy. Meteor. Soc., 130 , 33653383.

    • Search Google Scholar
    • Export Citation
  • Stevens, B., 2002: Entrainment in stratocumulus topped mixed layers. Quart. J. Roy. Meteor. Soc., 119 , 26632689.

  • Stevens, B., and Coauthors, 2003: Dynamics and chemistry of marine stratocumulus, DYCOMS-II. Bull. Amer. Meteor. Soc., 84 , 15791593.

  • Suarez, M. J., A. Arakawa, and D. A. Randall, 1983: The parameterization of the planetary boundary layer in the UCLA general circulation model: Formulation and results. Mon. Wea. Rev., 111 , 22242243.

    • Search Google Scholar
    • Export Citation
  • Sundqvist, H., 1978: A parameterization scheme for non-convective condensation including prediction of cloud water content. Quart. J. Roy. Meteor. Soc., 104 , 677690.

    • Search Google Scholar
    • Export Citation
  • Terra, R., 2004: PBL stratiform cloud inhomogeneities thermally induced by the orography: A parameterization for climate models. J. Atmos. Sci., 61 , 644663.

    • Search Google Scholar
    • Export Citation
  • Tokioka, T., K. Yamazaki, I. Yagai, and A. Kitoh, 1984: A description of the Meteorological Research Institute atmospheric general circulation model (MRI GCM-I). MRI Tech. Rep. 13, Meteorological Research Institute, 249 pp.

    • Search Google Scholar
    • Export Citation
  • Troen, I., and L. Mahrt, 1986: A simple model of the atmospheric boundary layer: Sensitivity to surface evaporation. Bound.-Layer Meteor., 37 , 129148.

    • Search Google Scholar
    • Export Citation
  • Turton, J. D., and S. Nicholls, 1987: A study of the diurnal variations of stratocumulus using a multiple mixed layer model. Quart. J. Roy. Meteor. Soc., 113 , 9691009.

    • Search Google Scholar
    • Export Citation
  • Wood, R., C. S. Bretherton, and D. L. Hartmann, 2002: Diurnal cycle of liquid water path over the subtropical and tropical oceans. Geophys. Res. Lett., 29 , 2902. doi:10.1029/2002GL015371.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., D. A. Randall, C-H. Moeng, M. Branson, K. A. Moyer, and Q. Wang, 1996: A surface flux parameterization based on the vertically averaged turbulence kinetic energy. Mon. Wea. Rev., 124 , 25212536.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 176 105 6
PDF Downloads 115 70 7

Parameterization of PBL Processes in an Atmospheric General Circulation Model: Description and Preliminary Assessment

View More View Less
  • 1 Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado
  • | 2 IMFIA, Universidad de la República, Montevideo, Uruguay
  • | 3 Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, Los Angeles, California
Restricted access

Abstract

This paper presents the basic features of a newly developed planetary boundary layer (PBL) parameterization, and the performance assessment of a version of the University of California, Los Angeles (UCLA), Atmospheric General Circulation Model (AGCM) to which the parameterization is incorporated. The UCLA AGCM traditionally uses a framework in which a sigma-type vertical coordinate for the PBL shares a coordinate surface with the free atmosphere at the PBL top. This framework facilitates an explicit representation of processes concentrated near the PBL top, which is crucially important especially for predicting PBL clouds. In the new framework, multiple layers are introduced between the PBL top and earth’s surface, allowing for predictions of the vertical profiles of potential temperature, total water mixing ratio, and horizontal winds within the PBL. The vertically integrated “bulk” turbulent kinetic energy (TKE) is also predicted for the PBL. The PBL-top mass entrainment is determined through an equation including the effects of TKE and the radiative and evaporative cooling processes concentrated near the PBL top. The surface fluxes are determined from an aerodynamic formula in which the velocity scale depends both on the square root of TKE and the grid-scale PBL velocity at the lowermost model layer. The turbulent fluxes within the PBL are determined through an approach that includes the effects of both large convective and small diffusive eddies. AGCM simulations with the new formulation of PBL are analyzed with a focus on the seasonal and diurnal variations. The simulated seasonal cycle of stratocumulus over the eastern oceans is realistic, as are the diurnal cycles of the PBL depth and precipitation over land. The simulated fluxes of latent heat, momentum, and shortwave radiation at the ocean surface and baroclinic activity in the middle latitudes show significant improvements over the previous versions of the AGCM based on the single-layer PBL.

Corresponding author address: Dr. Celal S. Konor, Dept. of Atmospheric Science, Colorado State University, Fort Collins, CO 80523-1371. Email: csk@atmos.colostate.edu

Abstract

This paper presents the basic features of a newly developed planetary boundary layer (PBL) parameterization, and the performance assessment of a version of the University of California, Los Angeles (UCLA), Atmospheric General Circulation Model (AGCM) to which the parameterization is incorporated. The UCLA AGCM traditionally uses a framework in which a sigma-type vertical coordinate for the PBL shares a coordinate surface with the free atmosphere at the PBL top. This framework facilitates an explicit representation of processes concentrated near the PBL top, which is crucially important especially for predicting PBL clouds. In the new framework, multiple layers are introduced between the PBL top and earth’s surface, allowing for predictions of the vertical profiles of potential temperature, total water mixing ratio, and horizontal winds within the PBL. The vertically integrated “bulk” turbulent kinetic energy (TKE) is also predicted for the PBL. The PBL-top mass entrainment is determined through an equation including the effects of TKE and the radiative and evaporative cooling processes concentrated near the PBL top. The surface fluxes are determined from an aerodynamic formula in which the velocity scale depends both on the square root of TKE and the grid-scale PBL velocity at the lowermost model layer. The turbulent fluxes within the PBL are determined through an approach that includes the effects of both large convective and small diffusive eddies. AGCM simulations with the new formulation of PBL are analyzed with a focus on the seasonal and diurnal variations. The simulated seasonal cycle of stratocumulus over the eastern oceans is realistic, as are the diurnal cycles of the PBL depth and precipitation over land. The simulated fluxes of latent heat, momentum, and shortwave radiation at the ocean surface and baroclinic activity in the middle latitudes show significant improvements over the previous versions of the AGCM based on the single-layer PBL.

Corresponding author address: Dr. Celal S. Konor, Dept. of Atmospheric Science, Colorado State University, Fort Collins, CO 80523-1371. Email: csk@atmos.colostate.edu

Save