• Bessafi, M., and M. C. Wheeler, 2006: Modulation of south Indian Ocean tropical cyclones by the Madden–Julian oscillation and convectively coupled equatorial waves. Mon. Wea. Rev., 134 , 638656.

    • Search Google Scholar
    • Export Citation
  • Dickinson, M. J., and J. Molinari, 2002: Mixed Rossby–gravity waves and western Pacific tropical cyclogenesis. Part I: Synoptic evolution. J. Atmos. Sci., 59 , 21832196.

    • Search Google Scholar
    • Export Citation
  • Ferreira, R. N., W. N. Schubert, and J. J. Hack, 1996: Dynamical aspects of twin tropical cyclones associated with the Madden–Julian oscillation. J. Atmos. Sci., 53 , 929945.

    • Search Google Scholar
    • Export Citation
  • Frank, W. M., and P. E. Roundy, 2006: The role of tropical waves in tropical cyclogenesis. Mon. Wea. Rev., 134 , 23972417.

  • Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106 , 447462.

  • Gill, A. E., 1982: Atmosphere–Ocean Dynamics. Academic Press, 662 pp.

  • Harrison, D. E., and B. S. Giese, 1991: Episodes of surface westerly winds as observed from islands in the western tropical Pacific. J. Geophys. Res., 96 , 32213237.

    • Search Google Scholar
    • Export Citation
  • Hodges, K. I., D. W. Chappell, G. J. Robinson, and G. Yang, 2000: An improved algorithm for generating global window brightness temperatures from multiple satellite infrared imagery. J. Atmos. Oceanic Technol., 17 , 12961312.

    • Search Google Scholar
    • Export Citation
  • JTWC, 1997: 1997 annual tropical cyclone report. Joint Typhoon Warning Center.

  • Keen, R. A., 1982: The role of cross-equatorial tropical cyclone pairs in the southern oscillation. Mon. Wea. Rev., 110 , 14051416.

  • Kiladis, G. N., and M. Wheeler, 1995: Horizontal and vertical structure of observed tropospheric equatorial Rossby waves. J. Geophys. Res., 100 , 19241938.

    • Search Google Scholar
    • Export Citation
  • Lander, M. A., 1990: Evolution of the cloud pattern during the formation of tropical cyclone twins symmetrical with respect to the equator. Mon. Wea. Rev., 118 , 11941202.

    • Search Google Scholar
    • Export Citation
  • Lander, M. A., and C. P. Guard, 2001: Western North Pacific, north Indian Ocean, and Southern Hemisphere tropical cyclones of 1997. Mon. Wea. Rev., 129 , 30153036.

    • Search Google Scholar
    • Export Citation
  • Leroy, A., and M. C. Wheeler, 2008: Statistical prediction of weekly tropical cyclone activity in the Southern Hemisphere. Mon. Wea. Rev., 136 , 36373654.

    • Search Google Scholar
    • Export Citation
  • Liebmann, B., H. H. Hendon, and J. D. Glick, 1994: The relationship between tropical cyclones of the western Pacific and Indian Oceans and the Madden–Julian oscillation. J. Meteor. Soc. Japan, 72 , 401411.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1971: Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci., 28 , 702708.

    • Search Google Scholar
    • Export Citation
  • Matsuno, T., 1966: Quasi-geostrophic motions in the equatorial area. J. Meteor. Soc. Japan, 44 , 2543.

  • McPhaden, M. J., 1995: The Tropical Atmosphere Ocean array is completed. Bull. Amer. Meteor. Soc., 76 , 739741.

  • Mekonnen, A., C. D. Thorncroft, and A. R. Aiyyer, 2006: Analysis of convection and its association with African easterly waves. J. Climate, 19 , 54055421.

    • Search Google Scholar
    • Export Citation
  • Molinari, J., K. Lombardo, and D. Vollaro, 2007: Tropical cyclogenesis within an equatorial Rossby wave packet. J. Atmos. Sci., 64 , 13011317.

    • Search Google Scholar
    • Export Citation
  • Numaguti, A., 1995: Characteristics of 4-to-20-day-period disturbances observed in the equatorial Pacific during the TOGA COARE IOP. J. Meteor. Soc. Japan, 73 , 353377.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., N. A. Rayner, T. M. Smith, D. C. Stokes, and W. Wang, 2002: An improved in situ and satellite SST analysis for climate. J. Climate, 15 , 16091625.

    • Search Google Scholar
    • Export Citation
  • Roundy, P. E., and W. M. Frank, 2004: A climatology of waves in the equatorial region. J. Atmos. Sci., 61 , 21052132.

  • Roundy, P. E., and G. N. Kiladis, 2006: Observed relationships between oceanic Kelvin waves and atmospheric forcing. J. Climate, 19 , 52535272.

    • Search Google Scholar
    • Export Citation
  • Takayabu, Y. N., 1994: Large-scale cloud disturbances associated with equatorial waves. Part I: Spectral features of the cloud disturbances. J. Meteor. Soc. Japan, 72 , 433448.

    • Search Google Scholar
    • Export Citation
  • Tuleya, R. E., and Y. Kurihara, 1981: A numerical study of the effects of environmental flow on tropical storm genesis. Mon. Wea. Rev., 109 , 24872506.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M., and G. N. Kiladis, 1999: Convectively coupled equatorial waves: Analysis of cloud and temperature in the wavenumber–frequency domain. J. Atmos. Sci., 56 , 374399.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M., G. N. Kiladis, and P. J. Webster, 2000: Large-scale dynamical fields associated with convectively coupled equatorial waves. J. Atmos. Sci., 57 , 613640.

    • Search Google Scholar
    • Export Citation
  • Yang, G-Y., and J. Slingo, 2001: The diurnal cycle in the tropics. Mon. Wea. Rev., 129 , 784801.

  • Yang, G-Y., B. Hoskins, and J. Slingo, 2003: Convectively coupled equatorial waves: A new methodology for identifying wave structures in observational data. J. Atmos. Sci., 60 , 16371654.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., 2005: Madden–Julian oscillation. Rev. Geophys., 43 , RG2003. doi:10.1029/2004RG000158.

  • Zhang, C., and P. J. Webster, 1989: Effects of zonal flows on equatorially trapped waves. J. Atmos. Sci., 46 , 36323652.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 213 113 10
PDF Downloads 156 90 8

A Case Study of an Outbreak of Twin Tropical Cyclones

View More View Less
  • 1 Department of Earth and Atmospheric Sciences, University at Albany, State University of New York, Albany, New York
Restricted access

Abstract

Previous studies have found that twin tropical cyclogenesis typically occurs 2–3 times a year in the Pacific Ocean. During October 1997, however, three sets of twin tropical cyclones developed in the central Pacific within a single month. Tropical cyclone archives indicate that this is the only such outbreak from 1969 to 2006. This case study explores the background and synoptic conditions that led to this unique event. All three twin tropical cyclogenesis events occurred within a broad and long-lasting envelope of warm water, low surface pressure, active convection, and weak or easterly vertical shear. Westerly winds at the equator and trade easterlies farther poleward created strips of cyclonic vorticity through a deep layer. A low-pass filter showed that these favorable conditions shifted eastward with time at 1–2 m s−1. In addition to the gradual eastward movement, the equatorial westerlies and convection were modulated by higher-frequency westward propagation. These anomalies appear to have been associated with convectively coupled n = 1 equatorial Rossby waves. The twin tropical cyclones formed only when the sum of the two modes produced equatorial westerlies in excess of 5 m s−1 and brightness temperature below 270 K. Applications of these results are proposed for the operational prediction of twin tropical cyclogenesis.

Corresponding author address: Carl J. Schreck III, Dept. of Earth and Atmospheric Sciences, University at Albany/SUNY, ES-330, Albany, NY 12222. Email: carl@atmos.albany.edu

Abstract

Previous studies have found that twin tropical cyclogenesis typically occurs 2–3 times a year in the Pacific Ocean. During October 1997, however, three sets of twin tropical cyclones developed in the central Pacific within a single month. Tropical cyclone archives indicate that this is the only such outbreak from 1969 to 2006. This case study explores the background and synoptic conditions that led to this unique event. All three twin tropical cyclogenesis events occurred within a broad and long-lasting envelope of warm water, low surface pressure, active convection, and weak or easterly vertical shear. Westerly winds at the equator and trade easterlies farther poleward created strips of cyclonic vorticity through a deep layer. A low-pass filter showed that these favorable conditions shifted eastward with time at 1–2 m s−1. In addition to the gradual eastward movement, the equatorial westerlies and convection were modulated by higher-frequency westward propagation. These anomalies appear to have been associated with convectively coupled n = 1 equatorial Rossby waves. The twin tropical cyclones formed only when the sum of the two modes produced equatorial westerlies in excess of 5 m s−1 and brightness temperature below 270 K. Applications of these results are proposed for the operational prediction of twin tropical cyclogenesis.

Corresponding author address: Carl J. Schreck III, Dept. of Earth and Atmospheric Sciences, University at Albany/SUNY, ES-330, Albany, NY 12222. Email: carl@atmos.albany.edu

Save