• Atlas, D., C. W. Ulbrich, F. D. Marks Jr., E. Amitai, and C. R. Williams, 1999: Systematic variation of drop size and radar-rainfall relations. J. Geophys. Res., 104 , 61556169.

    • Search Google Scholar
    • Export Citation
  • Biggerstaff, M. I., and R. A. Houze Jr., 1991: Kinematic and precipitation structure of the 10–11 June 1985 squall line. Mon. Wea. Rev., 119 , 30343064.

    • Search Google Scholar
    • Export Citation
  • Biggerstaff, M. I., and R. A. Houze Jr., 1993: Kinematics and microphysics of the transition zone of the 10–11 June 1985 squall line. J. Atmos. Sci., 50 , 30913110.

    • Search Google Scholar
    • Export Citation
  • Blahak, U., 2007: RADAR_MIE_LM and RADAR_MIELIB—Calculation of radar reflectivity from model output. Internal Rep., Institute for Meteorology and Climate Research, University/Research Center Karlsruhe, 150 pp.

    • Search Google Scholar
    • Export Citation
  • Brown, J. M., 1979: Mesoscale unsaturated downdrafts driven by rainfall evaporation: A numerical study. J. Atmos. Sci., 36 , 313338.

  • Bryan, G. H., J. C. Wyngaard, and J. M. Fritsch, 2003: Resolution requirements for the simulation of deep moist convection. Mon. Wea. Rev., 131 , 23942416.

    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1989: Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46 , 30773107.

    • Search Google Scholar
    • Export Citation
  • Ferrier, B. S., 1994: A double-moment multiple-phase four-class bulk ice scheme. Part I: Description. J. Atmos. Sci., 51 , 249280.

  • Ferrier, B. S., W-K. Tao, and J. Simpson, 1995: A double-moment multiple-phase four-class bulk ice scheme. Part II: Simulations of convective storms in different large-scale environments and comparisons with other bulk parameterizations. J. Atmos. Sci., 52 , 10011033.

    • Search Google Scholar
    • Export Citation
  • Ferrier, B. S., J. Simpson, and W-K. Tao, 1996: Factors responsible for precipitation efficiencies in midlatitude and tropical squall simulations. Mon. Wea. Rev., 124 , 21002125.

    • Search Google Scholar
    • Export Citation
  • Fovell, R. G., and Y. Ogura, 1988: Numerical simulation of a mid-latitude squall line in two dimensions. J. Atmos. Sci., 45 , 38463879.

    • Search Google Scholar
    • Export Citation
  • Fovell, R. G., G. L. Mullendore, and S-H. Kim, 2006: Discrete propagation in numerically simulated nocturnal squall lines. Mon. Wea. Rev., 134 , 37353752.

    • Search Google Scholar
    • Export Citation
  • Fujita, T. T., 1955: Results of detailed synoptic studies of squall lines. Tellus, 7 , 405436.

  • Grabowski, W. W., 1998: Toward cloud resolving modeling of large-scale tropical circulations: A simple cloud microphysics parameterization. J. Atmos. Sci., 55 , 32833298.

    • Search Google Scholar
    • Export Citation
  • Hauser, D., F. Roux, and P. Amayenc, 1988: Comparison of two methods for the retrieval of thermodynamic and microphysical variables from Doppler-radar measurements: Application to the case of a tropical squall line. J. Atmos. Sci., 45 , 12851303.

    • Search Google Scholar
    • Export Citation
  • Hodson, M. C., 1986: Raindrop size distribution. J. Climate Appl. Meteor., 25 , 10701074.

  • Hong, S-Y., J. Dudhia, and S-H. Chen, 2004: A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon. Wea. Rev., 132 , 103120.

    • Search Google Scholar
    • Export Citation
  • Houze Jr., R. A., 1989: Observed structure of mesoscale convective systems and implications for large-scale heating. Quart. J. Roy. Meteor. Soc., 115 , 425461.

    • Search Google Scholar
    • Export Citation
  • Houze Jr., R. A., and E. N. Rappaport, 1984: Air motions and precipitation structure of an early summer squall line over the eastern tropical Atlantic. J. Atmos. Sci., 41 , 553574.

    • Search Google Scholar
    • Export Citation
  • Khairoutdinov, M. F., and Y. Kogan, 2000: A new cloud physics parameterization in a large-eddy simulation model of marine stratocumulus. Mon. Wea. Rev., 128 , 229243.

    • Search Google Scholar
    • Export Citation
  • Khvorostyanov, V. I., and J. A. Curry, 1999: Toward the theory of stochastic condensation in clouds. Part II: Analytical solutions of gamma distribution type. J. Atmos. Sci., 56 , 39974013.

    • Search Google Scholar
    • Export Citation
  • Koenig, L. R., and F. W. Murray, 1976: Ice-bearing cumulus cloud evolution: Numerical simulation and general comparison against observations. J. Appl. Meteor., 15 , 747762.

    • Search Google Scholar
    • Export Citation
  • Lafore, J. P., and M. W. Moncrieff, 1989: A numerical investigation of the organization and interaction of the convective and stratiform regions of tropical squall lines. J. Atmos. Sci., 46 , 521544.

    • Search Google Scholar
    • Export Citation
  • Lang, S., W-K. Tao, J. Simpson, and B. Ferrier, 2003: Modeling of convective–stratiform precipitation processes: Sensitivity to partitioning methods. J. Appl. Meteor., 42 , 505527.

    • Search Google Scholar
    • Export Citation
  • Leary, C. A., and R. A. Houze Jr., 1979: Melting and evaporation of hydrometeors in precipitation from anvil clouds of deep tropical convection. J. Atmos. Sci., 36 , 669679.

    • Search Google Scholar
    • Export Citation
  • LeMone, M. A., G. M. Barnes, and E. J. Zipser, 1984: Momentum flux by lines of cumulonimbus over the tropical oceans. J. Atmos. Sci., 41 , 19141932.

    • Search Google Scholar
    • Export Citation
  • Lin, Y. L., R. D. Farley, and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor., 22 , 10651092.

    • Search Google Scholar
    • Export Citation
  • Liu, C., and M. W. Moncrieff, 2007: Sensitivity of cloud-resolving simulations of warm-season convection to cloud microphysics parameterization. Mon. Wea. Rev., 135 , 28542868.

    • Search Google Scholar
    • Export Citation
  • Martin, G. M., D. W. Johnson, and A. Spice, 1994: The measurement and parameterization of effective radius of droplets in warm stratocumulus clouds. J. Atmos. Sci., 51 , 18231842.

    • Search Google Scholar
    • Export Citation
  • McCumber, M., W-K. Tao, J. Simpson, R. Penc, and S-T. Soong, 1991: Comparison of ice-phase microphysical parameterization schemes using numerical simulations of tropical convection. J. Appl. Meteor., 30 , 9851004.

    • Search Google Scholar
    • Export Citation
  • Meyers, M. P., R. L. Walko, J. Y. Harrington, and W. R. Cotton, 1997: New RAMS cloud microphysics parameterization. Part II: The two-moment scheme. Atmos. Res., 45 , 339.

    • Search Google Scholar
    • Export Citation
  • Milbrandt, J. A., and M. K. Yau, 2005: A multimoment bulk microiphysics parameterization. Part I: Analysis of the role of the spectral shape parameter. J. Atmos. Sci., 62 , 30513064.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., and J. O. Pinto, 2005: Mesoscale modeling of springtime arctic mixed-phase clouds using a new two-moment bulk microphysics scheme. J. Atmos. Sci., 62 , 36833704.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., and J. O. Pinto, 2006: Intercomparison of bulk cloud microphysics schemes in mesoscale simulations of springtime arctic mixed-phase stratiform clouds. Mon. Wea. Rev., 134 , 18801900.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., and W. W. Grabowski, 2008: A novel approach for representing ice microphysics in models: Description and tests using a kinematic framework. J. Atmos. Sci., 65 , 15281548.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., J. A. Curry, and V. I. Khvorostyanov, 2005: A new double-moment microphysics parameterization for application in cloud and climate models. Part I: Description. J. Atmos. Sci., 62 , 16651677.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., J. O. Pinto, J. A. Curry, and G. M. McFarquhar, 2008: Sensitivity of modeled arctic mixed-phase stratocumulus to cloud condensation and ice nuclei over regionally varying surface conditions. J. Geophys. Res., 113 , D05203. doi:10.1029/2007JD008729.

    • Search Google Scholar
    • Export Citation
  • Ogura, Y., and Y-L. Chen, 1977: A life history of an intense mesoscale convective storm in Oklahoma. J. Atmos. Sci., 34 , 14581476.

  • Reisner, J., R. M. Rasmussen, and R. T. Bruintjes, 1998: Explicit forecasting of supercooled liquid water in winter storms using the MM5 forecast model. Quart. J. Roy. Meteor. Soc., 124 , 10711107.

    • Search Google Scholar
    • Export Citation
  • Rotunno, R., J. B. Klemp, and M. L. Weisman, 1988: A theory for strong, long-lived squall lines. J. Atmos. Sci., 45 , 463485.

  • Rutledge, S. A., and P. V. Hobbs, 1983: The mesoscale and microscale structure of organization of clouds and precipitation in midlatitude cyclones. VIII: A model for the “seeder-feeder” process in warm-frontal rainbands. J. Atmos. Sci., 40 , 11851206.

    • Search Google Scholar
    • Export Citation
  • Rutledge, S. A., and P. V. Hobbs, 1984: The mesoscale and microscale structure of organization of clouds and precipitation in midlatitude cyclones. XII: A diagnostic modeling study of precipitation development in narrow cold-frontal rainbands. J. Atmos. Sci., 41 , 29492972.

    • Search Google Scholar
    • Export Citation
  • Rutledge, S. A., and R. A. Houze Jr., 1987: A diagnostic modeling study of the trailing stratiform region of a midlatitude squall line. J. Atmos. Sci., 44 , 26402656.

    • Search Google Scholar
    • Export Citation
  • Rutledge, S. A., R. A. Houze Jr., M. I. Biggerstaff, and T. Matejka, 1988: The Oklahoma–Kansas mesoscale convective system of 10–11 June 1985: Precipitation structure and single-Doppler radar analysis. Mon. Wea. Rev., 116 , 14091430.

    • Search Google Scholar
    • Export Citation
  • Seifert, A., 2008: On the parameterization of evaporation of raindrops as simulated by a one-dimensional rainshaft model. J. Atmos. Sci., 65 , 36083619.

    • Search Google Scholar
    • Export Citation
  • Seifert, A., and K. D. Beheng, 2001: A double-moment parameterization for simulating autoconversion, accretion, and self-collection. Atmos. Res., 59–60 , 265281.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, W. Wang, and J. G. Powers, 2007: A description of the Advanced Research WRF Version 2. NCAR Tech. Note NCAR/TN-468+STR, 88 pp.

    • Search Google Scholar
    • Export Citation
  • Smith, P. L., 1984: Equivalent radar reflectivity factors for snow and ice particles. J. Climate Appl. Meteor., 23 , 12581260.

  • Smull, B. F., and R. A. Houze Jr., 1985: A midlatitude squall line with a trailing region of stratiform rain: Radar and satellite observations. Mon. Wea. Rev., 113 , 117133.

    • Search Google Scholar
    • Export Citation
  • Srivastava, R. C., 1987: A model of intense downdrafts driven by the melting and evaporation of precipitation. J. Atmos. Sci., 44 , 17521773.

    • Search Google Scholar
    • Export Citation
  • Srivastava, R. C., T. J. Matejka, and T. J. Lorello, 1986: Doppler radar study of the trailing anvil region associated with a squall line. J. Atmos. Sci., 43 , 356377.

    • Search Google Scholar
    • Export Citation
  • Sui, C-H., X. Li, and K-M. Lau, 1998: Radiative–convective processes in simulated diurnal variations of tropical oceanic convection. J. Atmos. Sci., 55 , 23452357.

    • Search Google Scholar
    • Export Citation
  • Takemi, T., 2007: A sensitivity of squall-line intensity to environmental static stability under various shear and moisture conditions. Atmos. Res., 84 , 374389.

    • Search Google Scholar
    • Export Citation
  • Tao, W-K., S-T. Soong, C-H. Sui, B. Ferrier, S. Lang, J. Scala, M-D. Chou, and K. Pickering, 1993: Heating, moisture, and water budgets of tropical and midlatitude squall lines: Comparison and sensitivity to longwave radiation. J. Atmos. Sci., 50 , 673690.

    • Search Google Scholar
    • Export Citation
  • Tao, W-K., J. R. Scala, B. Ferrier, and J. Simpson, 1995: The effect of melting processes on the development of a tropical and midlatitude squall line. J. Atmos. Sci., 52 , 19341948.

    • Search Google Scholar
    • Export Citation
  • Tao, W-K., S. Lang, J. Simpson, C-H. Sui, B. S. Ferrier, and M-D. Chou, 1996: Mechanisms of cloud–radiation interaction in the tropics and midlatitudes. J. Atmos. Sci., 53 , 26242651.

    • Search Google Scholar
    • Export Citation
  • Thompson, G., R. M. Rasmussen, and K. Manning, 2004: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part I: Description and sensitivity analysis. Mon. Wea. Rev., 132 , 519542.

    • Search Google Scholar
    • Export Citation
  • Thompson, G., P. R. Field, R. M. Rasmussen, and W. D. Hall, 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136 , 50955115.

    • Search Google Scholar
    • Export Citation
  • Tokay, A., and D. A. Short, 1996: Evidence from tropical raindrop spectra of the origin of rain from stratiform versus convective clouds. J. Appl. Meteor., 35 , 355371.

    • Search Google Scholar
    • Export Citation
  • Uijlenhoet, R., M. Steiner, and J. A. Smith, 2003: Variability of raindrop size distributions in a squall line and impliciations for radar rainfall estimation. J. Hydrometeor., 4 , 4361.

    • Search Google Scholar
    • Export Citation
  • Wacker, U., and A. Seifert, 2001: Evolution of rain water profiles resulting from pure sedimentation: Spectral vs. parameterized description. Atmos. Res., 58 , 1939.

    • Search Google Scholar
    • Export Citation
  • Waldvogel, A., 1974: The N0 jump of raindrop spectra. J. Atmos. Sci., 31 , 10671077.

  • Weisman, M. L., and J. B. Klemp, 1982: The dependence of numerically simulated convective storms on wind shear and buoyancy. Mon. Wea. Rev., 110 , 504520.

    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., and J. B. Klemp, 1984: The structure and classification of numerically simulated convective storms in directionally varying wind shears. Mon. Wea. Rev., 112 , 24792498.

    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., and R. Rotunno, 2004: “A theory for strong long-lived squall lines” revisited. J. Atmos. Sci., 61 , 361382.

  • Zipser, E. J., 1969: The role of organized unsaturated convective downdrafts in the structure and rapid decay of an equatorial disturbance. J. Appl. Meteor., 8 , 799814.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 3049 1747 94
PDF Downloads 2743 1442 81

Impact of Cloud Microphysics on the Development of Trailing Stratiform Precipitation in a Simulated Squall Line: Comparison of One- and Two-Moment Schemes

View More View Less
  • 1 National Center for Atmospheric Research,* Boulder, Colorado
  • | 2 School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia
Restricted access

Abstract

A new two-moment cloud microphysics scheme predicting the mixing ratios and number concentrations of five species (i.e., cloud droplets, cloud ice, snow, rain, and graupel) has been implemented into the Weather Research and Forecasting model (WRF). This scheme is used to investigate the formation and evolution of trailing stratiform precipitation in an idealized two-dimensional squall line. Results are compared to those using a one-moment version of the scheme that predicts only the mixing ratios of the species, and diagnoses the number concentrations from the specified size distribution intercept parameter and predicted mixing ratio. The overall structure of the storm is similar using either the one- or two-moment schemes, although there are notable differences. The two-moment (2-M) scheme produces a widespread region of trailing stratiform precipitation within several hours of the storm formation. In contrast, there is negligible trailing stratiform precipitation using the one-moment (1-M) scheme. The primary reason for this difference are reduced rain evaporation rates in 2-M compared to 1-M in the trailing stratiform region, leading directly to greater rain mixing ratios and surface rainfall rates. Second, increased rain evaporation rates in 2-M compared to 1-M in the convective region at midlevels result in weaker convective updraft cells and increased midlevel detrainment and flux of positively buoyant air from the convective into the stratiform region. This flux is in turn associated with a stronger mesoscale updraft in the stratiform region and enhanced ice growth rates. The reduced (increased) rates of rain evaporation in the stratiform (convective) regions in 2-M are associated with differences in the predicted rain size distribution intercept parameter (which was specified as a constant in 1-M) between the two regions. This variability is consistent with surface disdrometer measurements in previous studies that show a rapid decrease of the rain intercept parameter during the transition from convective to stratiform rainfall.

Corresponding author address: Hugh Morrison, National Center for Atmospheric Research, 3450 Mitchell Ln., Boulder, CO 80307. Email: morrison@ucar.edu

Abstract

A new two-moment cloud microphysics scheme predicting the mixing ratios and number concentrations of five species (i.e., cloud droplets, cloud ice, snow, rain, and graupel) has been implemented into the Weather Research and Forecasting model (WRF). This scheme is used to investigate the formation and evolution of trailing stratiform precipitation in an idealized two-dimensional squall line. Results are compared to those using a one-moment version of the scheme that predicts only the mixing ratios of the species, and diagnoses the number concentrations from the specified size distribution intercept parameter and predicted mixing ratio. The overall structure of the storm is similar using either the one- or two-moment schemes, although there are notable differences. The two-moment (2-M) scheme produces a widespread region of trailing stratiform precipitation within several hours of the storm formation. In contrast, there is negligible trailing stratiform precipitation using the one-moment (1-M) scheme. The primary reason for this difference are reduced rain evaporation rates in 2-M compared to 1-M in the trailing stratiform region, leading directly to greater rain mixing ratios and surface rainfall rates. Second, increased rain evaporation rates in 2-M compared to 1-M in the convective region at midlevels result in weaker convective updraft cells and increased midlevel detrainment and flux of positively buoyant air from the convective into the stratiform region. This flux is in turn associated with a stronger mesoscale updraft in the stratiform region and enhanced ice growth rates. The reduced (increased) rates of rain evaporation in the stratiform (convective) regions in 2-M are associated with differences in the predicted rain size distribution intercept parameter (which was specified as a constant in 1-M) between the two regions. This variability is consistent with surface disdrometer measurements in previous studies that show a rapid decrease of the rain intercept parameter during the transition from convective to stratiform rainfall.

Corresponding author address: Hugh Morrison, National Center for Atmospheric Research, 3450 Mitchell Ln., Boulder, CO 80307. Email: morrison@ucar.edu

Save