• Aberson, S. D., 2003: Targeted observations to improve operational tropical cyclone track forecast guidance. Mon. Wea. Rev., 131 , 16131628.

    • Search Google Scholar
    • Export Citation
  • Charney, J. G., 1955: The use of primitive equations of motion in numerical prediction. Tellus, 7 , 2226.

  • Davis, C. A., 1992: Piecewise potential vorticity inversion. J. Atmos. Sci., 49 , 13971411.

  • Errico, R. M., 1997: What is an adjoint model? Bull. Amer. Meteor. Soc., 78 , 25772591.

  • Kim, H. M., and B-J. Jung, 2006: Adjoint-based forecast sensitivities of Typhoon Rusa. Geophys. Res. Lett., 33 , L21813. doi:10.1029/2006GL027289.

    • Search Google Scholar
    • Export Citation
  • Kim, H. M., and B-J. Jung, 2009: Influence of moist physics and norms on singular vectors for a tropical cyclone. Mon. Wea. Rev., 137 , 525543.

    • Search Google Scholar
    • Export Citation
  • Kleist, D. T., and M. C. Morgan, 2005: Interpretation of the structure and evolution of adjoint-derived forecast sensitivity gradients. Mon. Wea. Rev., 133 , 466484.

    • Search Google Scholar
    • Export Citation
  • Langland, R. H., 2005: Issues in targeted observing. Quart. J. Roy. Meteor. Soc., 131 , 34093425.

  • Majumdar, S. J., C. H. Bishop, B. J. Etherton, and Z. Toth, 2002: Adaptive sampling with the ensemble transform Kalman filter. Part II: Field program implementation. Mon. Wea. Rev., 130 , 13561369.

    • Search Google Scholar
    • Export Citation
  • Peng, M. S., and C. A. Reynolds, 2006: Sensitivity of tropical cyclone forecasts as revealed by singular vectors. J. Atmos. Sci., 63 , 25082528.

    • Search Google Scholar
    • Export Citation
  • Shapiro, L. J., 1996: The motion of Hurricane Gloria: A potential vorticity diagnosis. Mon. Wea. Rev., 124 , 24972508.

  • Wu, C-C., 2006: Targeted observation and data assimilation for tropical cyclone track prediction. Proc. Sixth Int. Workshop on Tropical Cyclones, San Jose, Costa Rica, WMO/CAS/WWW, 409–423.

    • Search Google Scholar
    • Export Citation
  • Wu, C-C., and K. A. Emanuel, 1995a: Potential vorticity diagnostics of hurricane movement. Part I: A case study of Hurricane Bob (1991). Mon. Wea. Rev., 123 , 6992.

    • Search Google Scholar
    • Export Citation
  • Wu, C-C., and K. A. Emanuel, 1995b: Potential vorticity diagnostics of hurricane movement. Part II: Tropical Storm Ana (1991) and Hurricane Andrew (1992). Mon. Wea. Rev., 123 , 93109.

    • Search Google Scholar
    • Export Citation
  • Wu, C-C., and Y-H. Kuo, 1999: Typhoons affecting Taiwan: Current understanding and future challenges. Bull. Amer. Meteor. Soc., 80 , 6780.

    • Search Google Scholar
    • Export Citation
  • Wu, C-C., T-S. Huang, W-P. Huang, and K-H. Chou, 2003: A new look at the binary interaction: Potential vorticity diagnosis of the unusual southward movement of Typhoon Bopha (2000) and its interaction with Typhoon Saomai (2000). Mon. Wea. Rev., 131 , 12891300.

    • Search Google Scholar
    • Export Citation
  • Wu, C-C., T-S. Huang, and K-H. Chou, 2004: Potential vorticity diagnosis of the key factors affecting the motion of Typhoon Sinlaku (2002). Mon. Wea. Rev., 132 , 20842093.

    • Search Google Scholar
    • Export Citation
  • Wu, C-C., and Coauthors, 2005: Dropwindsonde Observations for Typhoon Surveillance near the Taiwan Region (DOTSTAR): An overview. Bull. Amer. Meteor. Soc., 86 , 787790.

    • Search Google Scholar
    • Export Citation
  • Wu, C-C., K-H. Chou, P-H. Lin, S. D. Aberson, M. S. Peng, and T. Nakazawa, 2007a: The impact of dropwindsonde data on typhoon track forecasts in DOTSTAR. Wea. Forecasting, 22 , 11571176.

    • Search Google Scholar
    • Export Citation
  • Wu, C-C., J-H. Chen, P-H. Lin, and K-H. Chou, 2007b: Targeted observations of tropical cyclone movement based on the adjoint-derived sensitivity steering vector. J. Atmos. Sci., 64 , 26112626.

    • Search Google Scholar
    • Export Citation
  • Wu, C-C., and Coauthors, 2008: Intercomparison of targeted observation guidances for tropical cyclones in the western North Pacific. Preprints, 28th Conf. on Hurricanes and Tropical Meteorology, Orlando, FL, Amer. Meteor. Soc., 7C.3.

    • Search Google Scholar
    • Export Citation
  • Yang, C-C., C-C. Wu, K-H. Chou, and C-Y. Lee, 2008: Binary interaction between Typhoons Fengshen (2002) and Fungwong (2002) based on the potential vorticity diagnosis. Mon. Wea. Rev., 136 , 45934611.

    • Search Google Scholar
    • Export Citation
  • Zou, X., F. Vandenberghe, M. Pondeca, and Y-H. Kuo, 1997: Introduction to adjoint techniques and the MM5 adjoint modeling system. NCAR Tech. Note NCAR/TN-435+STR, 110 pp. [Available from NCAR, P.O. Box 3000, Boulder, CO 80307-3000].

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 245 189 3
PDF Downloads 100 51 2

Interaction of Typhoon Shanshan (2006) with the Midlatitude Trough from both Adjoint-Derived Sensitivity Steering Vector and Potential Vorticity Perspectives

View More View Less
  • 1 Department of Atmospheric Sciences, National Taiwan University, Taipei, Taiwan
Restricted access

Abstract

Targeted observation is one of the most important research and forecasting issues for improving tropical cyclone predictability. A new parameter [i.e., the adjoint-derived sensitivity steering vector (ADSSV)] has been proposed and adopted as one of the targeted observing strategies in the Dropwindsonde Observations for Typhoon Surveillance near the Taiwan Region (DOTSTAR). The ADSSV identifies the sensitive areas at the observing time to the steering flow at the verifying time through the adjoint calculation. In this study, the ADSSV is calculated from the nonlinear forecast model of the fifth-generation Pennsylvania State University–National Center for Atmospheric Research (PSU–NCAR) Mesoscale Model (MM5) and its adjoint to interpret the dynamical processes in the interaction between Typhoon Shanshan (2006) and the midlatitude trough. The ADSSV results imply that high-sensitivity regions affecting the motion of Typhoon Shanshan are located at the edge of the subtropical high and the 500-hPa midlatitude trough over northern central China. These ADSSV signals are in very good agreement with the quantitative evaluation based on the potential vorticity (PV) diagnosis. The vertical structure of the ADSSV is also shown for more physical insights into the typhoon–trough interaction. The maximum ADSSV occurs at 800–500 hPa to the southeast of Shanshan (associated with the subtropical high), while distinct ADSSV signals are located upstream of the storm center at about 500–300 hPa (associated with the mid- to upper-tropospheric midlatitude trough). Overall, it is demonstrated that the ADSSV features can well capture the signal of the large-scale trough feature affecting the motion of Shanshan, which can also be well validated from the PV analysis.

Corresponding author address: Dr. Chun-Chieh Wu, Dept. of Atmospheric Sciences, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 106, Taiwan. Email: cwu@typhoon.as.ntu.edu.tw

This article included in the Targeted Observations, Data Assimilation, and Tropical Cyclone Predictability special collection.

Abstract

Targeted observation is one of the most important research and forecasting issues for improving tropical cyclone predictability. A new parameter [i.e., the adjoint-derived sensitivity steering vector (ADSSV)] has been proposed and adopted as one of the targeted observing strategies in the Dropwindsonde Observations for Typhoon Surveillance near the Taiwan Region (DOTSTAR). The ADSSV identifies the sensitive areas at the observing time to the steering flow at the verifying time through the adjoint calculation. In this study, the ADSSV is calculated from the nonlinear forecast model of the fifth-generation Pennsylvania State University–National Center for Atmospheric Research (PSU–NCAR) Mesoscale Model (MM5) and its adjoint to interpret the dynamical processes in the interaction between Typhoon Shanshan (2006) and the midlatitude trough. The ADSSV results imply that high-sensitivity regions affecting the motion of Typhoon Shanshan are located at the edge of the subtropical high and the 500-hPa midlatitude trough over northern central China. These ADSSV signals are in very good agreement with the quantitative evaluation based on the potential vorticity (PV) diagnosis. The vertical structure of the ADSSV is also shown for more physical insights into the typhoon–trough interaction. The maximum ADSSV occurs at 800–500 hPa to the southeast of Shanshan (associated with the subtropical high), while distinct ADSSV signals are located upstream of the storm center at about 500–300 hPa (associated with the mid- to upper-tropospheric midlatitude trough). Overall, it is demonstrated that the ADSSV features can well capture the signal of the large-scale trough feature affecting the motion of Shanshan, which can also be well validated from the PV analysis.

Corresponding author address: Dr. Chun-Chieh Wu, Dept. of Atmospheric Sciences, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 106, Taiwan. Email: cwu@typhoon.as.ntu.edu.tw

This article included in the Targeted Observations, Data Assimilation, and Tropical Cyclone Predictability special collection.

Save