• Atlas, D., and V. G. Plank, 1953: Drop-size history during a shower. J. Meteor., 10 , 291295.

  • Atlas, D., R. C. Srivastava, and R. S. Sekhon, 1973: Doppler radar characteristics of precipitation at vertical incidence. Rev. Geophys. Space Sci., 11 , 135.

    • Search Google Scholar
    • Export Citation
  • Brown Jr., P. S., 1988: The effects of filament, sheet, and disk breakup upon the drop spectrum. J. Atmos. Sci., 45 , 712718.

  • Dhaka, S. K., M. Takahashi, Y. Kawatani, S. Malik, Y. Shibagaki, and S. Fukao, 2003: Observations of deep convective updrafts in tropical convection and their role in the generation of gravity waves. J. Meteor. Soc. Japan, 81 , 11851199.

    • Search Google Scholar
    • Export Citation
  • Donaldson, N. R., 1984: Raindrop evolution with collision breakup: Theory and models. Ph.D. thesis, University of Toronto, Toronto, Ontario, Canada, Canadian Thesis No. 66758, 181 pp. [Available from the National Library of Canada, 395 Wellington St., Ottawa, ON K1A 0N4, Canada.].

    • Search Google Scholar
    • Export Citation
  • Douglas, R. H., K. L. S. Gunn, and J. S. Marshall, 1957: Pattern in the vertical of snow generation. J. Meteor., 14 , 95114.

  • Fabry, F., and I. Zawadzki, 1995: Long-term radar observations of the melting layer of precipitation and their interpretation. J. Atmos. Sci., 52 , 838851.

    • Search Google Scholar
    • Export Citation
  • Feingold, G., and Z. Levin, 1986: The lognormal fit to raindrop spectra from frontal convective clouds in Israel. J. Climate Appl. Meteor., 25 , 13461363.

    • Search Google Scholar
    • Export Citation
  • Foote, G. B., and P. S. du Toit, 1969: Terminal velocity of raindrops aloft. J. Appl. Meteor., 8 , 249253.

  • Gage, K. S., C. R. Williams, P. E. Johnston, W. L. Ecklund, R. Cifelli, A. Tokay, and D. A. Carter, 2000: Doppler radar profiles as calibration tools for scanning radars. J. Appl. Meteor., 39 , 22092222.

    • Search Google Scholar
    • Export Citation
  • Garcia-Garcia, F., and J. E. Gonzalez, 2000: Raindrop spectra observations from convective showers in the valley of Mexico. Proc. 13th Int. Conf. on Clouds and Precipitation, Reno, NV, International Commission on Cloud Physics and International Association for Meteorology and Precipitation, 398–401.

    • Search Google Scholar
    • Export Citation
  • Gossard, E. E., R. G. Strauch, and R. R. Rogers, 1990: Evolution of drop size distribution in liquid precipitation observed by ground-based Doppler radar. J. Atmos. Oceanic Technol., 7 , 815828.

    • Search Google Scholar
    • Export Citation
  • Gunn, K. L. S., and J. S. Marshall, 1955: The effect of wind shear on falling precipitation. J. Meteor., 12 , 339349.

  • Joss, J., and A. Waldvogel, 1967: Ein Spektrograph für Niederschlagstropfen mit automatischer Auswertung. Pure Appl. Geophys., 68 , 240246.

    • Search Google Scholar
    • Export Citation
  • Joss, J., and A. Waldvogel, 1969: Raindrop size distribution and sampling size errors. J. Atmos. Sci., 26 , 566569.

  • Kirankumar, N. V. P., T. N. Rao, B. Radhakrishna, and D. N. Rao, 2008: Statistical characteristics of raindrop size distribution in southwest monsoon season. J. Appl. Meteor. Climatol., 47 , 576590.

    • Search Google Scholar
    • Export Citation
  • Kollias, P., B. A. Albrecht, and F. D. Marks Jr., 2001: Raindrop sorting induced by vertical drafts in convective clouds. Geophys. Res. Lett., 28 , 27872790.

    • Search Google Scholar
    • Export Citation
  • List, R., N. R. Donaldson, and R. E. Stewart, 1987: Temporal evolution of drop spectra to collisional equilibrium in steady and pulsating rain. J. Atmos. Sci., 44 , 362372.

    • Search Google Scholar
    • Export Citation
  • Low, T. B., and R. List, 1982a: Collision, coalescence, and breakup of raindrops. Part I: Experimentally established coalescence efficiencies and fragment size distributions in breakup. J. Atmos. Sci., 39 , 15911606.

    • Search Google Scholar
    • Export Citation
  • Low, T. B., and R. List, 1982b: Collision, coalescence, and breakup of raindrops. Part II: Parameterization of fragment size distributions. J. Atmos. Sci., 39 , 16071618.

    • Search Google Scholar
    • Export Citation
  • Lucas, C., A. D. MacKinnon, R. A. Vincent, and P. T. May, 2004: Raindrop size distribution retrievals from a VHF boundary layer profiler. J. Atmos. Oceanic Technol., 21 , 4560.

    • Search Google Scholar
    • Export Citation
  • Marshall, J. S., 1953: Precipitation trajectories and patterns. J. Meteor., 10 , 2529.

  • Marshall, J. S., and W. M. Palmer, 1948: The distribution of raindrops with size. J. Meteor., 5 , 165166.

  • McFarquhar, G. M., 2004: A new representation of collision-induced breakup of raindrops and its implications for the shapes of raindrop size distributions. J. Atmos. Sci., 61 , 777794.

    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., and R. List, 1991: The evolution of three-peak raindrop size distributions in one-dimensional shaft model. Part II: Multiple pulse rain. J. Atmos. Sci., 48 , 15871595.

    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., and R. List, 1993: The effect of curve fits for the disdrometer calibration on raindrop spectra, rainfall rate, and radar reflectivity. J. Appl. Meteor., 32 , 774782.

    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., R. List, D. R. Hudak, R. P. Nissen, and J. S. Dobbie, 1996: Flux measurements of pulsating rain with a disdrometer and Doppler radar during phase II of the joint tropical rain experiment in Malaysia. J. Appl. Meteor., 35 , 859874.

    • Search Google Scholar
    • Export Citation
  • Mossop, S. C., 1976: Production of secondary ice particles during the growth of graupel by riming. Quart. J. Roy. Meteor. Soc., 102 , 4557.

    • Search Google Scholar
    • Export Citation
  • Nissen, R., R. List, D. Hudak, G. M. McFarquhar, R. P. Lawson, N. P. Tung, S. K. Soo, and T. S. Kang, 2005: Constant raindrop fall speed profiles derived from Doppler radar data analyses for steady nonconvective precipitation. J. Atmos. Sci., 62 , 220230.

    • Search Google Scholar
    • Export Citation
  • Prat, O. P., and A. P. Barros, 2007: A robust numerical solution of the stochastic collection–breakup equation for warm rain. J. Appl. Meteor. Climatol., 46 , 14801497.

    • Search Google Scholar
    • Export Citation
  • Rajopadhyaya, D. K., P. T. May, and R. A. Vincent, 1993: A general approach to the retrieval of raindrop size distributions from VHF wind profiler Doppler spectra: Modeling results. J. Atmos. Oceanic Technol., 10 , 710717.

    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., 1995: Using radar-measured radial vertical velocities to distinguish precipitation scattering from clear-air scattering. J. Atmos. Oceanic Technol., 12 , 257267.

    • Search Google Scholar
    • Export Citation
  • Rao, P. B., A. R. Jain, P. Kishore, P. Balamuralidhar, S. H. Damle, and G. Viswanathan, 1995: Indian MST radar, 1. System description and sample vector wind measurements in ST mode. Radio Sci., 30 , 11251138.

    • Search Google Scholar
    • Export Citation
  • Rao, T. N., D. N. Rao, and S. Raghavan, 1999: Tropical precipitating systems observed with Indian MST radar. Radio Sci., 5 , 11251139.

    • Search Google Scholar
    • Export Citation
  • Rao, T. N., D. N. Rao, K. Mohan, and S. Raghavan, 2001: Classification of tropical precipitating systems and associated Z-R relationships. J. Geophys. Res., 106 , 1769917711.

    • Search Google Scholar
    • Export Citation
  • Rao, T. N., N. V. P. Kirankumar, B. Radhakrishna, and D. N. Rao, 2006: On the variability of the shape-slope parameter relations of the gamma raindrop size distribution model. Geophys. Res. Lett., 33 , L22809. doi:10.1029/2006GL028440.

    • Search Google Scholar
    • Export Citation
  • Rao, T. N., N. V. P. Kirankumar, B. Radhakrishna, D. N. Rao, and K. Nakamura, 2008: Classification of tropical precipitating systems using wind profiler spectral moments: I. Algorithm description and validation. J. Atmos. Oceanic Technol., 25 , 884897.

    • Search Google Scholar
    • Export Citation
  • Sauvageot, H., and M. Koffi, 2000: Multimodal raindrop size distributions. J. Atmos. Sci., 57 , 24802492.

  • Schafer, R., S. Avery, P. May, D. Rajopadhyaya, and C. Williams, 2002: Estimation of rainfall drop size distributions from dual frequency wind profiler spectra using deconvolution and a nonlinear least squares fitting technique. J. Atmos. Oceanic Technol., 19 , 864874.

    • Search Google Scholar
    • Export Citation
  • Sheppard, B. E., 1990: Effect of irregularities in the diameter classification of raindrops by the Joss–Waldvogel disdrometer. J. Atmos. Oceanic Technol., 7 , 180183.

    • Search Google Scholar
    • Export Citation
  • Steiner, M., and A. Waldvogel, 1987: Peaks in raindrop size distributions. J. Atmos. Sci., 44 , 31273133.

  • Testik, F. Y., and A. P. Barros, 2007: Toward elucidating the microstructure of rainfall: A survey. Rev. Geophys., 45 , RG2003. doi:10.1029/2005RG000182.

    • Search Google Scholar
    • Export Citation
  • Tokay, A., and D. A. Short, 1996: Evidence from tropical raindrop spectra of the origin of rain from stratiform versus convective clouds. J. Appl. Meteor., 35 , 355371.

    • Search Google Scholar
    • Export Citation
  • Tremblay, A., A. Glazer, W. Szyrmer, G. Isaac, and I. Zawadzki, 1995: Forecasting of supercooled clouds. Mon. Wea. Rev., 123 , 20982113.

    • Search Google Scholar
    • Export Citation
  • Ulbrich, C. W., 1983: Natural variations in the analytical form of the raindrop size distribution. J. Climate Appl. Meteor., 22 , 17641775.

    • Search Google Scholar
    • Export Citation
  • Valdez, M. P., and K. C. Young, 1985: Number fluxes in equilibrium raindrop populations: A Markov chain analysis. J. Atmos. Sci., 42 , 10241036.

    • Search Google Scholar
    • Export Citation
  • Wakasugi, K., A. Mizutani, M. Matsuo, S. Fukao, and S. Kato, 1986: A direct method for deriving drop-size distribution and vertical air velocities from VHF Doppler radar spectra. J. Atmos. Oceanic Technol., 3 , 623629.

    • Search Google Scholar
    • Export Citation
  • Williams, C. R., W. L. Ecklund, and K. S. Gage, 1995: Classification of precipitating clouds in the tropics using 915-MHz wind profilers. J. Atmos. Oceanic Technol., 12 , 9961012.

    • Search Google Scholar
    • Export Citation
  • Willis, P. T., 1984: Functional fits to some observed drop size distributions and parameterization of rain. J. Atmos. Sci., 41 , 16481661.

    • Search Google Scholar
    • Export Citation
  • Zawadzki, I., and M. De A. Antonio, 1988: Equilibrium raindrop size distributions in tropical rain. J. Atmos. Sci., 45 , 34523459.

  • Zawadzki, I., L. Ostiguy, and J. P. R. Laprise, 1993: Retrieval of the microphysical properties in CASP storm by integration of a numerical kinematic model. Atmos.–Ocean, 31 , 201233.

    • Search Google Scholar
    • Export Citation
  • Zawadzki, I., W. Szyrmer, and S. Laroche, 2000: Diagnostic of supercooled cloud from single Doppler observations in regions of detectable snow. J. Appl. Meteor., 39 , 10411058.

    • Search Google Scholar
    • Export Citation
  • Zawadzki, I., F. Fabry, and W. Szyrmer, 2001: Observations of supercooled water and secondary ice generation by a vertically pointing X-band Doppler radar. Atmos. Res., 59–60 , 343359.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 92 56 7
PDF Downloads 61 43 4

Multipeak Raindrop Size Distribution Observed by UHF/VHF Wind Profilers during the Passage of a Mesoscale Convective System

View More View Less
  • 1 National Atmospheric Research Laboratory, Gadanki, India
Restricted access

Abstract

The Indian Mesosphere–Stratosphere–Troposphere radar (IMSTR), Lower Atmospheric Wind Profiler (LAWP), and Joss–Waldvogel (JW) disdrometer measurements during the passage of two distinctly different (in terms of total rain and rainfall rate) convective storms are utilized to understand the nature and origin of the multipeak raindrop size distribution (MRDSD). Important issues, such as the preferential stage and height at which bi- or multimodal rain distribution occurs in a mesoscale convective system (MCS) are addressed. For both of the storms, the MRDSD is observed during the transition period from convection to stratiform rain. The pattern and variation of the MRDSD during this period is strikingly similar in both of the storms. The MRDSD is first observed above the freezing level in the presence of heavy riming. The subsequent spectra have shown bimodal distribution below the freezing level, and the bimodality is attributed to the coexistence of ice and supercooled droplets. Interestingly, the bimodal distribution has not varied much with altitude when it is produced because of the coexistence of ice and supercooled droplets. The MRDSD is also observed at few range gates and for a short duration. Such a type of MRDSD is seen during the transition period between decaying and intensifying rain.

Corresponding author address: Dr. T. Narayana Rao, National Atmospheric Research Laboratory, S.V.U. Campus, P.O. Box No. 123, Prakasham Nagar, Tirupati 517 502, A.P., India. Email: tnrao@narl.gov.in

Abstract

The Indian Mesosphere–Stratosphere–Troposphere radar (IMSTR), Lower Atmospheric Wind Profiler (LAWP), and Joss–Waldvogel (JW) disdrometer measurements during the passage of two distinctly different (in terms of total rain and rainfall rate) convective storms are utilized to understand the nature and origin of the multipeak raindrop size distribution (MRDSD). Important issues, such as the preferential stage and height at which bi- or multimodal rain distribution occurs in a mesoscale convective system (MCS) are addressed. For both of the storms, the MRDSD is observed during the transition period from convection to stratiform rain. The pattern and variation of the MRDSD during this period is strikingly similar in both of the storms. The MRDSD is first observed above the freezing level in the presence of heavy riming. The subsequent spectra have shown bimodal distribution below the freezing level, and the bimodality is attributed to the coexistence of ice and supercooled droplets. Interestingly, the bimodal distribution has not varied much with altitude when it is produced because of the coexistence of ice and supercooled droplets. The MRDSD is also observed at few range gates and for a short duration. Such a type of MRDSD is seen during the transition period between decaying and intensifying rain.

Corresponding author address: Dr. T. Narayana Rao, National Atmospheric Research Laboratory, S.V.U. Campus, P.O. Box No. 123, Prakasham Nagar, Tirupati 517 502, A.P., India. Email: tnrao@narl.gov.in

Save