• Barkmeijer, J., R. Buizza, and T. N. Palmer, 1999: 3D-Var Hessian singular vectors and their potential use in the ECMWF Ensemble Prediction System. Quart. J. Roy. Meteor. Soc., 125 , 23332351.

    • Search Google Scholar
    • Export Citation
  • Barkmeijer, J., R. Buizza, T. N. Palmer, K. Puri, and J. Mahfouf, 2001: Tropical singular vectors computed with linearized diabatic physics. Quart. J. Roy. Meteor. Soc., 127 , 685708.

    • Search Google Scholar
    • Export Citation
  • Bengtsson, L., K. I. Hodges, and L. S. R. Froude, 2005: Global observations and forecast skill. Tellus, 57A , 515527.

  • Bourke, W., R. Buizza, and M. Naughton, 2004: Performance of the ECMWF and the BoM Ensemble Prediction Systems in the Southern Hemisphere. Mon. Wea. Rev., 132 , 23382357.

    • Search Google Scholar
    • Export Citation
  • Buizza, R., and T. N. Palmer, 1995: The singular-vector structure of the atmospheric global circulation. J. Atmos. Sci., 52 , 14341456.

    • Search Google Scholar
    • Export Citation
  • Buizza, R., and T. N. Palmer, 1998: Impact of ensemble size on ensemble prediction. Mon. Wea. Rev., 126 , 25032518.

  • Buizza, R., and P. Chessa, 2002: Prediction of the U.S. storm of 24–26 January 2000 with the ECMWF Ensemble Prediction System. Mon. Wea. Rev., 130 , 15311551.

    • Search Google Scholar
    • Export Citation
  • Buizza, R., and A. Hollingsworth, 2002: Storm prediction over Europe using the ECMWF Ensemble Prediction System. Meteor. Appl., 9 , 289305.

    • Search Google Scholar
    • Export Citation
  • Buizza, R., T. Petroliagis, T. Palmer, J. Barkmeijer, M. Hamrud, A. Hollingsworth, A. Simmons, and N. Wedi, 1998: Impact of model resolution on the performance of an ensemble prediction system. Quart. J. Roy. Meteor. Soc., 124 , 19351960.

    • Search Google Scholar
    • Export Citation
  • Buizza, R., M. Miller, and T. N. Palmer, 1999: Stochastic representation of model uncertainties in the ECMWF Ensemble Prediction System. Quart. J. Roy. Meteor. Soc., 125 , 28872908.

    • Search Google Scholar
    • Export Citation
  • Buizza, R., P. L. Houtekamer, Z. Toth, G. Pellerin, M. Wei, and Y. Zhu, 2005: A comparison of the ECMWF, MSC, and NCEP global Ensemble Prediction Systems. Mon. Wea. Rev., 133 , 10761097.

    • Search Google Scholar
    • Export Citation
  • Froude, L. S. R., L. Bengtsson, and K. I. Hodges, 2007a: The predictability of extratropical storm tracks and the sensitivity of their prediction to the observing system. Mon. Wea. Rev., 135 , 315333.

    • Search Google Scholar
    • Export Citation
  • Froude, L. S. R., L. Bengtsson, and K. I. Hodges, 2007b: The prediction of extratropical storm tracks by the ECMWF and NCEP Ensemble Prediction Systems. Mon. Wea. Rev., 135 , 25452567.

    • Search Google Scholar
    • Export Citation
  • Haseler, J., 2004: Early-delivery suite. Tech. Memo. ECMWF TM 454, ECMWF, Shinfield Park, Reading, United Kingdom, 35 pp.

  • Hewson, T. D., 1997: Objective identification of frontal wave cyclones. Meteor. Appl., 4 , 311315.

  • Hodges, K. I., 1995: Feature tracking on the unit sphere. Mon. Wea. Rev., 123 , 34583465.

  • Hodges, K. I., 1996: Spherical nonparametric estimators applied to the UGAMP model integration for AMIP. Mon. Wea. Rev., 124 , 29142932.

    • Search Google Scholar
    • Export Citation
  • Hodges, K. I., 1999: Adaptive constraints for feature tracking. Mon. Wea. Rev., 127 , 13621373.

  • Holton, J. R., 2004: An Introduction to Dynamic Meteorology. 4th ed. Academic Press, 529 pp.

  • Hoskins, B. J., and K. I. Hodges, 2002: New perspectives on the Northern Hemisphere winter storm tracks. J. Atmos. Sci., 59 , 10411061.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and K. I. Hodges, 2005: A new perspective on Southern Hemisphere storm tracks. J. Climate, 18 , 41084129.

  • Hoskins, B. J., M. E. McIntyre, and A. W. Robertson, 1985: On the use and significance of isentropic potential vorticity maps. Quart. J. Roy. Meteor. Soc., 111 , 877946.

    • Search Google Scholar
    • Export Citation
  • Jung, T., E. Klinker, and S. Uppala, 2005: Reanalysis and reforecast of three major European storms of the twentieth century using the ECMWF forecasting system. Part II: Ensemble forecasts. Meteor. Appl., 12 , 111122.

    • Search Google Scholar
    • Export Citation
  • Methven, J., E. Heifetz, B. J. Hoskins, and C. H. Bishop, 2005: The counter-propagating Rossby wave perspective on baroclinic instability. Part III: Primitive equation disturbances on the sphere. Quart. J. Roy. Meteor. Soc., 131 , 13931424.

    • Search Google Scholar
    • Export Citation
  • Molteni, F., and R. Buizza, 1999: Validation of the ECMWF Ensemble Prediction System using empirical orthogonal functions. Mon. Wea. Rev., 127 , 23462358.

    • Search Google Scholar
    • Export Citation
  • Molteni, F., R. Buizza, T. N. Palmer, and T. Petroliagis, 1996: The ECMWF Ensemble Prediction System: Methodology and validation. Quart. J. Roy. Meteor. Soc., 122 , 73119.

    • Search Google Scholar
    • Export Citation
  • Mullen, S. L., and R. Buizza, 2001: Quantitative precipitation forecasts over the United States by the ECMWF Ensemble Prediction System. Mon. Wea. Rev., 129 , 638663.

    • Search Google Scholar
    • Export Citation
  • Richardson, D. S., 2000: Skill and relative economic value of the ECMWF Ensemble Prediction System. Quart. J. Roy. Meteor. Soc., 126 , 649667.

    • Search Google Scholar
    • Export Citation
  • Scherrer, S. C., C. Appenzeller, P. Eckert, and D. Cattani, 2004: Analysis of the spread–skill relations using the ECMWF Ensemble Prediction System over Europe. Wea. Forecasting, 19 , 552565.

    • Search Google Scholar
    • Export Citation
  • Toth, Z., and E. Kalnay, 1993: Ensemble forecasting at NMC: The generation of perturbations. Bull. Amer. Meteor. Soc., 74 , 23172330.

  • Toth, Z., and E. Kalnay, 1997: Ensemble forecasting at NCEP and the breeding method. Mon. Wea. Rev., 125 , 32973319.

  • Wei, M., and Z. Toth, 2003: A new measure of ensemble performance: Perturbation versus error correlation analysis (PECA). Mon. Wea. Rev., 131 , 15491565.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 73 30 0
PDF Downloads 32 12 0

Regional Differences in the Prediction of Extratropical Cyclones by the ECMWF Ensemble Prediction System

View More View Less
  • 1 Environmental Systems Science Centre, University of Reading, Reading, United Kingdom
Restricted access

Abstract

A regional study of the prediction of extratropical cyclones by the European Centre for Medium-Range Weather Forecasts (ECMWF) Ensemble Prediction System (EPS) has been performed. An objective feature-tracking method has been used to identify and track the cyclones along the forecast trajectories. Forecast error statistics have then been produced for the position, intensity, and propagation speed of the storms. In previous work, data limitations meant it was only possible to present the diagnostics for the entire Northern Hemisphere (NH) or Southern Hemisphere. A larger data sample has allowed the diagnostics to be computed separately for smaller regions around the globe and has made it possible to explore the regional differences in the prediction of storms by the EPS. Results show that in the NH there is a larger ensemble mean error in the position of storms over the Atlantic Ocean. Further analysis revealed that this is mainly due to errors in the prediction of storm propagation speed rather than in direction. Forecast storms propagate too slowly in all regions, but the bias is about 2 times as large in the NH Atlantic region. The results show that storm intensity is generally overpredicted over the ocean and underpredicted over the land and that the absolute error in intensity is larger over the ocean than over the land. In the NH, large errors occur in the prediction of the intensity of storms that originate as tropical cyclones but then move into the extratropics. The ensemble is underdispersive for the intensity of cyclones (i.e., the spread is smaller than the mean error) in all regions. The spatial patterns of the ensemble mean error and ensemble spread are very different for the intensity of cyclones. Spatial distributions of the ensemble mean error suggest that large errors occur during the growth phase of storm development, but this is not indicated by the spatial distributions of the ensemble spread. In the NH there are further differences. First, the large errors in the prediction of the intensity of cyclones that originate in the tropics are not indicated by the spread. Second, the ensemble mean error is larger over the Pacific Ocean than over the Atlantic, whereas the opposite is true for the spread. The use of a storm-tracking approach, to both weather forecasters and developers of forecast systems, is also discussed.

Corresponding author address: Lizzie S. R. Froude, Environmental Systems Science Centre, University of Reading, Harry Pitt Building, Whiteknights, P.O. Box 238, Reading RG6 6AL, United Kingdom. Email: lsrf@mail.nerc-essc.ac.uk

Abstract

A regional study of the prediction of extratropical cyclones by the European Centre for Medium-Range Weather Forecasts (ECMWF) Ensemble Prediction System (EPS) has been performed. An objective feature-tracking method has been used to identify and track the cyclones along the forecast trajectories. Forecast error statistics have then been produced for the position, intensity, and propagation speed of the storms. In previous work, data limitations meant it was only possible to present the diagnostics for the entire Northern Hemisphere (NH) or Southern Hemisphere. A larger data sample has allowed the diagnostics to be computed separately for smaller regions around the globe and has made it possible to explore the regional differences in the prediction of storms by the EPS. Results show that in the NH there is a larger ensemble mean error in the position of storms over the Atlantic Ocean. Further analysis revealed that this is mainly due to errors in the prediction of storm propagation speed rather than in direction. Forecast storms propagate too slowly in all regions, but the bias is about 2 times as large in the NH Atlantic region. The results show that storm intensity is generally overpredicted over the ocean and underpredicted over the land and that the absolute error in intensity is larger over the ocean than over the land. In the NH, large errors occur in the prediction of the intensity of storms that originate as tropical cyclones but then move into the extratropics. The ensemble is underdispersive for the intensity of cyclones (i.e., the spread is smaller than the mean error) in all regions. The spatial patterns of the ensemble mean error and ensemble spread are very different for the intensity of cyclones. Spatial distributions of the ensemble mean error suggest that large errors occur during the growth phase of storm development, but this is not indicated by the spatial distributions of the ensemble spread. In the NH there are further differences. First, the large errors in the prediction of the intensity of cyclones that originate in the tropics are not indicated by the spread. Second, the ensemble mean error is larger over the Pacific Ocean than over the Atlantic, whereas the opposite is true for the spread. The use of a storm-tracking approach, to both weather forecasters and developers of forecast systems, is also discussed.

Corresponding author address: Lizzie S. R. Froude, Environmental Systems Science Centre, University of Reading, Harry Pitt Building, Whiteknights, P.O. Box 238, Reading RG6 6AL, United Kingdom. Email: lsrf@mail.nerc-essc.ac.uk

Save