• Alexander, M. J., J. R. Holton, and D. R. Durran, 1995: The gravity wave response above deep convection in a squall line simulation. J. Atmos. Sci., 52 , 22122232.

    • Search Google Scholar
    • Export Citation
  • Atlas, D., C. W. Ulbrich, F. D. Marks, and C. Williams, 1999: Systematic variation of drop size and radar-rainfall relations. J. Geophys. Res., 104 , 61556170.

    • Search Google Scholar
    • Export Citation
  • Balsley, B. B., W. L. Ecklund, D. A. Carter, A. C. Riddle, and K. S. Gage, 1988: Average vertical motion in the tropical atmosphere observed by a radar wind profiler on Pohnpei (70°N latitude, 157°E longitude). J. Atmos. Sci., 45 , 396405.

    • Search Google Scholar
    • Export Citation
  • Cetrone, J., and R. A. Houze, 2006: Characteristics of tropical convection over the ocean near Kwajalein. Mon. Wea. Rev., 134 , 834853.

    • Search Google Scholar
    • Export Citation
  • Cifelli, R., and S. A. Rutledge, 1994: Vertical motion structure in maritime continent mesoscale, convective systems: Results from 50-MHz profiler. J. Atmos. Sci., 51 , 26312652.

    • Search Google Scholar
    • Export Citation
  • Cifelli, R., and S. A. Rutledge, 1998: Vertical motion, diabatic heating, and rainfall characteristics in north Australia convective systems. Quart. J. Roy. Meteor. Soc., 124 , 11331162.

    • Search Google Scholar
    • Export Citation
  • Cifelli, R., S. A. Rutledge, D. J. Boccippio, and T. Matejka, 1996: Horizontal divergence and vertical velocity retrievals from Doppler radar and wind profiler observations. J. Atmos. Oceanic Technol., 13 , 948966.

    • Search Google Scholar
    • Export Citation
  • Cifelli, R., W. A. Peterson, L. D. Carry, and S. A. Rutledge, 2002: Radar observations of the kinematic, microphysical and precipitation characteristics of two MCS’s in TRMM LBA. J. Geophys. Res., 107 , 8077. doi:10.1029/2000JD000264.

    • Search Google Scholar
    • Export Citation
  • Danielsen, E. F., 1982: A dehydration mechanism for the stratosphere. Geophys. Res. Lett., 9 , 605608.

  • Dessler, A. E., 2000: The Chemistry and Physics of Stratospheric Ozone, Academic Press, 214 pp.

  • Dhaka, S. K., S. M. Choudary, Y. S. Shibagaki, M. D. Yamanaka, and S. Fukao, 2002: Observable signatures of a convectively generated wave field over the tropics using Indian MST radar at Gadanki (13.5°N, 79.2°E). Geophys. Res. Lett., 29 , 18721875.

    • Search Google Scholar
    • Export Citation
  • Dhaka, S. K., M. Takahashi, Y. Kawatani, S. Malik, Y. Shibagaki, and S. Fukao, 2003: Observations of deep convective updrafts in tropical convection and their role in the generation of gravity waves. J. Meteor. Soc. Japan, 81 , 11851199.

    • Search Google Scholar
    • Export Citation
  • Gamache, J. F., and R. A. Houze Jr., 1985: Further analysis of the composite wind and thermodynamic structure of the 12 September GATE squall line. Mon. Wea. Rev., 113 , 12411259.

    • Search Google Scholar
    • Export Citation
  • Gettelman, A., M. L. Salby, and F. Sassi, 2002: Distribution and influence of convection in the tropical tropopause region. J. Geophys. Res., 107 , 4080. doi:10.1029/2001JD001048.

    • Search Google Scholar
    • Export Citation
  • Houze Jr., R. A., 1989: Observed structure of mesoscale convective systems and implications on large-scale heating. Quart. J. Roy. Meteor. Soc., 115 , 425461.

    • Search Google Scholar
    • Export Citation
  • Houze Jr., R. A., 1993: Cloud Dynamics, Academic Press, 573 pp.

  • Houze Jr., R. A., 2004: Mesoscale convective systems. Rev. Geophys., 42 , 143.

  • Houze Jr., R. A., and C-P. Cheng, 1977: Radar characteristics of tropical convection observed during GATE: Mean properties and trends over the summer season. Mon. Wea. Rev., 105 , 964980.

    • Search Google Scholar
    • Export Citation
  • Jain, A. R., Y. Jayarao, A. K. Patra, P. B. Rao, G. Viswanathan, and S. K. Subramanian, 2000: Observations of tropical convection events using Indian MST radar: First results. Quart. J. Roy. Meteor. Soc., 126 , 30973115.

    • Search Google Scholar
    • Export Citation
  • Jorgensen, D. P., E. J. Zipser, and M. A. LeMone, 1985: Vertical motions in intense hurricanes. J. Atmos. Sci., 42 , 839856.

  • Joseph, P. V., and P. L. Raman, 1966: Existence of low-level westerly jet-stream over peninsular India during July. Indian J. Meteor. Geophys., 17 , 437471.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77 , 437471.

  • Keenan, T. D., and R. E. Carbone, 1992: A preliminary morphology of precipitation systems in tropical northern Australia. Quart. J. Roy. Meteor. Soc., 118 , 283326.

    • Search Google Scholar
    • Export Citation
  • Kingsmill, D. E., and R. A. Houze Jr., 1999: Kinematic characteristics of air flowing into and out of precipitating convection over the west Pacific warm pool: An airborne Doppler radar survey. Quart. J. Roy. Meteor. Soc., 125 , 11651207.

    • Search Google Scholar
    • Export Citation
  • Knupp, K. R., 1987: Downdrafts within High Plains cumulonimbi. Part I: General kinematic structure. J. Atmos. Sci., 44 , 9871008.

  • Kumar, K. K., 2006: VHF radar observations of convectively generated gravity waves: Some new insights. Geophys. Res. Lett., 33 , L01803. doi:10.1029/2006GL027404.

    • Search Google Scholar
    • Export Citation
  • Kumar, K. K., 2007: VHF radar investigations on the role of mechanical oscillator effect in exciting convectively generated gravity waves. Geophys. Res. Lett., 34 , L01803. doi:10.1029/2006GL027404.

    • Search Google Scholar
    • Export Citation
  • Kumar, K. K., A. R. Jain, and D. N. Rao, 2005: VHF/UHF radar observations of tropical mesoscale convective systems over southern India. Ann. Geophys., 23 , 16731683.

    • Search Google Scholar
    • Export Citation
  • LeMone, M. A., and E. J. Zipser, 1980: Cumulonimbus vertical velocity events in GATE. Part I: Diameter, intensity and mass flux. J. Atmos. Sci., 37 , 24442457.

    • Search Google Scholar
    • Export Citation
  • Lucas, C., E. J. Zipser, and M. A. LeMone, 1994: Vertical velocity in oceanic convection off tropical Australia. J. Atmos. Sci., 51 , 31833193.

    • Search Google Scholar
    • Export Citation
  • May, P. T., and D. K. Rajopadhyaya, 1996: Wind profiler observations of vertical motion and precipitation microphysics of a tropical squall line. Mon. Wea. Rev., 124 , 621633.

    • Search Google Scholar
    • Export Citation
  • May, P. T., and D. K. Rajopadhyaya, 1999: Vertical velocity characteristics of deep convection over Darwin, Australia. Mon. Wea. Rev., 127 , 10561070.

    • Search Google Scholar
    • Export Citation
  • May, P. T., A. R. Jameson, T. D. Keenan, P. E. Johnston, and C. Lucas, 2002: Combined wind profiler/polarimetric radar studies of the vertical motion microphysical characteristics of tropical sea-breeze thunderstorms. Mon. Wea. Rev., 130 , 22282239.

    • Search Google Scholar
    • Export Citation
  • Miyakawa, T., and T. Satomura, 2006: Seasonal variation and environmental properties of southward propagating mesoscale convective systems over the Bay of Bengal. SOLA, 2 , 8891. doi:10.2151/sola.2006-023.

    • Search Google Scholar
    • Export Citation
  • Pandya, R. E., and D. R. Durran, 1996: The influence of convectively generated thermal forcing on the mesoscale circulation around squall lines. J. Atmos. Sci., 53 , 29242951.

    • Search Google Scholar
    • Export Citation
  • Rajeevan, M., J. Bhate, J. D. Kale, and B. Lal, 2006: High resolution daily gridded rainfall data for the Indian region: Analysis of break and active monsoon spells. Curr. Sci., 91 , 296306.

    • Search Google Scholar
    • Export Citation
  • Rajopadhyaya, D. K., P. T. May, and R. A. Vincent, 1993: A general approach to the retrieval of raindrop size distributions from wind profiler Doppler spectra: Modeling results. J. Atmos. Oceanic Technol., 10 , 710717.

    • Search Google Scholar
    • Export Citation
  • Rao, D. N., and Coauthors, 2000: VHF radar observations of tropical easterly jet stream over Gadanki. Adv. Space Res., 26 , 943946.

  • Rao, P. B., A. R. Jain, P. Kishore, P. Balamuralidhar, S. H. Damle, and G. Viswanathan, 1995: Indian MST radar. 1. System description and sample vector wind measurements using ST mode. Radio Sci., 30 , 11251138.

    • Search Google Scholar
    • Export Citation
  • Rao, T. N., D. N. Rao, and S. Raghavan, 1999: Tropical precipitating systems observed with Indian MST radar. Radio Sci., 34 , 11251139.

    • Search Google Scholar
    • Export Citation
  • Rao, T. N., N. V. P. Kirankumar, B. Radhakrishna, and D. N. Rao, 2006: On the variability of the shape-slope parameter relations of the gamma raindrop size distribution model. Geophys. Res. Lett., 33 , L22809. doi:10.1029/2006GL028440.

    • Search Google Scholar
    • Export Citation
  • Rao, T. N., B. Radhakrishna, R. Srivastava, T. M. Satyanarayana, D. N. Rao, and R. Ramesh, 2008a: Inferring microphysical processes occurring in mesoscale convective systems from radar measurements and isotopic analysis. Geophys. Res. Lett., 35 , L09813. doi:10.1029/2008GL033495.

    • Search Google Scholar
    • Export Citation
  • Rao, T. N., N. V. P. Kirankumar, B. Radhakrishna, and D. N. Rao, 2008b: Classification of tropical precipitating systems using wind profiler spectral moments: I. Algorithm description and validation. J. Atmos. Oceanic Technol., 25 , 884897.

    • Search Google Scholar
    • Export Citation
  • Rao, T. N., N. V. P. Kirankumar, B. Radhakrishna, D. N. Rao, and K. Nakamura, 2008c: Classification of tropical precipitating systems using wind profiler spectral moments. Part II: Statistical characteristics of rainfall systems and sensitivity analysis. J. Atmos. Oceanic Technol., 25 , 898908.

    • Search Google Scholar
    • Export Citation
  • Sato, T., H. Doji, H. Iwai, and I. Kimura, 1990: Computer processing for deriving drop-size distributions and vertical air velocities from VHF Doppler radar spectra. Radio Sci., 25 , 961973.

    • Search Google Scholar
    • Export Citation
  • Sherwood, S. C., and A. E. Dessler, 2000: On the control of stratospheric humidity. Geophys. Res. Lett., 27 , 25132516.

  • Srivastava, R. C., 1985: A simple model of evaporatively driven downdraft: Application to microburst downdraft. J. Atmos. Sci., 42 , 10041023.

    • Search Google Scholar
    • Export Citation
  • Smull, B. F., and R. A. Houze Jr., 1987: Dual-Doppler radar analysis of a midlatitude squall line with a trailing region of stratiform rain. J. Atmos. Sci., 44 , 21282148.

    • Search Google Scholar
    • Export Citation
  • Wakasugi, K., A. Mizutani, M. Matsuo, S. Fukao, and S. Kato, 1986: A direct method for deriving drop size distribution and vertical air velocities from VHF Doppler radar spectra. J. Atmos. Oceanic Technol., 3 , 623629.

    • Search Google Scholar
    • Export Citation
  • Warner, J., 1970: On steady-state one-dimensional models of cumulus convection. J. Atmos. Sci., 27 , 10351040.

  • Yang, M-J., and R. A. Houze Jr., 1995: Multicell squall-line structure as a manifestation of vertically trapped gravity waves. Mon. Wea. Rev., 123 , 641661.

    • Search Google Scholar
    • Export Citation
  • Yoe, J. G., M. F. Larsen, and E. J. Zipser, 1992: VHF wind profiler data quality and comparison of methods for deducing horizontal and vertical air motions in mesoscale convective systems. J. Atmos. Oceanic Technol., 9 , 713727.

    • Search Google Scholar
    • Export Citation
  • Yuter, S. E., and R. A. Houze Jr., 1995a: Three-dimensional kinematic and microphysical evolution of Florida cumulonimbus. Part I: Spatial distribution of updrafts, downdrafts, and precipitation. Mon. Wea. Rev., 123 , 19211940.

    • Search Google Scholar
    • Export Citation
  • Yuter, S. E., and R. A. Houze Jr., 1995b: Three-dimensional kinematic and microphysical evolution of Florida cumulonimbus. Part II: Frequency distribution of vertical velocity, reflectivity, and differential reflectivity. Mon. Wea. Rev., 123 , 19411963.

    • Search Google Scholar
    • Export Citation
  • Zipser, E. J., and M. A. Lemone, 1980: Cumulonimbus vertical velocity events in GATE. Part II: Synthesis and model structure. J. Atmos. Sci., 37 , 24582469.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 115 64 3
PDF Downloads 104 53 2

Characteristics of Vertical Velocity Cores in Different Convective Systems Observed over Gadanki, India

View More View Less
  • 1 National Atmospheric Research Laboratory, Andhra Pradesh, India
Restricted access

Abstract

The Indian mesosphere–stratosphere–troposphere (MST) radar measurements during the passage of 60 convective systems are used to study the vertical air velocity (w) characteristics of tropical convection. The up- and downdraft cores and various stages/types of convection (shallow, deep, and decaying) are discerned from radar time–intensity maps of w. The characteristics of cores (speed, size, orientation, vertical extent, gravity wave activity, etc.) at different stages of convection are discussed with the help of three case studies. The cores stratified based on the type of convection are mostly erect in nature in all types of convective systems, except for deep updraft cores. A considerable percentage (35%) of deep updraft cores show inclined structure with elevation angles as low as 0°–20°. The variation of the horizontal wind field with height and the internal dynamics of mesoscale convective systems (MCSs) are thought to be responsible for this geometry. Further, the vertical extent of draft cores is limited in all types of convection, except for deep updraft cores. About 77% of deep updraft cores have a vertical extent greater than 10 km and ∼23% of these cores reach an altitude of 16 km. The size (overpass time) of the core shows an increasing trend with altitude up to 10–12 km and then decreases. Among different types of convection, the size of core is larger for deep updraft cores and smaller for shallow updraft cores. The variation of w distribution with height is different for different convection categories. The mode (and also the mean) of the distribution shows low-level descent (below 3 km) and mid–high-level ascent in shallow and deep convection categories, while nearly uniform distribution is seen in decaying convection. Strong updrafts are seen in deep convective systems in the upper troposphere (of the order of 15–20 m s−1), followed by shallow and decaying systems, while downdrafts are generally weaker in all types of convection. The variability (within the cores and also with altitude) and the number of data points are larger in updraft cores than in downdraft cores corresponding to shallow and deep convection. Contrasting the composite w profile at Gadanki with those obtained elsewhere revealed interesting features: the absence of subsidence at higher levels, the presence of low-level subsidence, a single ascent peak in the middle troposphere, etc. Further, the magnitude of composite w derived from wind profiler measurements is larger than that obtained with other techniques.

Corresponding author address: Dr. T. Narayana Rao, National Atmospheric Research Laboratory, Tirupati-517502, India. Email: tnrao@narl.gov.in

Abstract

The Indian mesosphere–stratosphere–troposphere (MST) radar measurements during the passage of 60 convective systems are used to study the vertical air velocity (w) characteristics of tropical convection. The up- and downdraft cores and various stages/types of convection (shallow, deep, and decaying) are discerned from radar time–intensity maps of w. The characteristics of cores (speed, size, orientation, vertical extent, gravity wave activity, etc.) at different stages of convection are discussed with the help of three case studies. The cores stratified based on the type of convection are mostly erect in nature in all types of convective systems, except for deep updraft cores. A considerable percentage (35%) of deep updraft cores show inclined structure with elevation angles as low as 0°–20°. The variation of the horizontal wind field with height and the internal dynamics of mesoscale convective systems (MCSs) are thought to be responsible for this geometry. Further, the vertical extent of draft cores is limited in all types of convection, except for deep updraft cores. About 77% of deep updraft cores have a vertical extent greater than 10 km and ∼23% of these cores reach an altitude of 16 km. The size (overpass time) of the core shows an increasing trend with altitude up to 10–12 km and then decreases. Among different types of convection, the size of core is larger for deep updraft cores and smaller for shallow updraft cores. The variation of w distribution with height is different for different convection categories. The mode (and also the mean) of the distribution shows low-level descent (below 3 km) and mid–high-level ascent in shallow and deep convection categories, while nearly uniform distribution is seen in decaying convection. Strong updrafts are seen in deep convective systems in the upper troposphere (of the order of 15–20 m s−1), followed by shallow and decaying systems, while downdrafts are generally weaker in all types of convection. The variability (within the cores and also with altitude) and the number of data points are larger in updraft cores than in downdraft cores corresponding to shallow and deep convection. Contrasting the composite w profile at Gadanki with those obtained elsewhere revealed interesting features: the absence of subsidence at higher levels, the presence of low-level subsidence, a single ascent peak in the middle troposphere, etc. Further, the magnitude of composite w derived from wind profiler measurements is larger than that obtained with other techniques.

Corresponding author address: Dr. T. Narayana Rao, National Atmospheric Research Laboratory, Tirupati-517502, India. Email: tnrao@narl.gov.in

Save