• Bellman, R. E., 1957: Dynamic Programming. Princeton University Press, 342 pp.

  • Bishop, C. M., 1995: Neural Networks for Pattern Recognition. Oxford University Press, 482 pp.

  • Bister, M., and K. A. Emanuel, 1998: Dissipative heating and hurricane intensity. Meteor. Atmos. Phys., 52 , 233240.

  • Black, M. L., and H. E. Willoughby, 1992: The concentric eyewall cycle of Hurricane Gilbert. Mon. Wea. Rev., 120 , 947957.

  • Briggs, W., and D. Ruppert, 2005: Assessing the skill of yes/no predictions. Biometrics, 61 , 799807.

  • Briggs, W., M. Pocernich, and D. Ruppert, 2005: Incorporating misclassification error in skill assessment. Mon. Wea. Rev., 133 , 33823392.

    • Search Google Scholar
    • Export Citation
  • Camp, J. P., and M. T. Montgomery, 2001: Hurricane maximum intensity: Past and present. Mon. Wea. Rev., 129 , 17041717.

  • DeMaria, M., and J. Kaplan, 1994: A Statistical Hurricane Intensity Prediction Scheme (SHIPS) for the Atlantic basin. Wea. Forecasting, 9 , 209220.

    • Search Google Scholar
    • Export Citation
  • DeMaria, M., and J. Kaplan, 1999: An updated Statistical Hurricane Intensity Prediction Scheme (SHIPS) for the Atlantic and eastern North Pacific basins. Wea. Forecasting, 14 , 326337.

    • Search Google Scholar
    • Export Citation
  • DeMaria, M., M. Mainelli, L. K. Shay, J. A. Knaff, and J. Kaplan, 2005: Further improvements to the Statistical Hurricane Intensity Prediction Scheme (SHIPS). Wea. Forecasting, 20 , 531543.

    • Search Google Scholar
    • Export Citation
  • Dodge, P., R. W. Burpee, and F. D. Marks, 1999: The kinematic structure of a hurricane with sea level pressure less than 900 mb. Mon. Wea. Rev., 127 , 9871004.

    • Search Google Scholar
    • Export Citation
  • Domingos, P., and M. Pazzani, 1997: Beyond independence: Conditions for the optimality of the simple Bayesian classifier. Mach. Learn., 29 , 103130.

    • Search Google Scholar
    • Export Citation
  • Elsner, J., and C. Schmertmann, 1994: Assessing forecast skill through cross validation. Wea. Forecasting, 9 , 619624.

  • Fortner, L. E., 1958: Typhoon Sarah, 1956. Bull. Amer. Meteor. Soc., 39 , 633639.

  • Hand, D. J., and K. Yu, 2001: Idiot’s Bayes: Not so stupid after all? Int. Stat. Rev., 69 , 385398.

  • Hawkins, J. D., and M. Helveston, 2004: Tropical cyclone multiple eyewall characteristics. Extended Abstracts, 26th Conf. on Hurricanes and Tropical Meteorology, Miami, FL, Amer. Meteor. Soc., P1.7.

    • Search Google Scholar
    • Export Citation
  • Hawkins, J. D., and Coauthors, 2006: Tropical cyclone multiple eyewall configurations. Extended Abstracts, 27th Conf. on Hurricanes and Tropical Meteorology, Monterey, CA, Amer. Meteor. Soc., 6B.1.

    • Search Google Scholar
    • Export Citation
  • Houze Jr., R. A., S. S. Chen, B. F. Smull, W-C. Lee, and M. M. Bell, 2007: Hurricane intensity and eyewall replacement. Science, 315 , 12351239.

    • Search Google Scholar
    • Export Citation
  • Knaff, J. A., J. P. Kossin, and M. DeMaria, 2003: Annular hurricanes. Wea. Forecasting, 18 , 204223.

  • Knaff, J. A., T. A. Cram, A. B. Schumacher, J. P. Kossin, and M. DeMaria, 2008: Objective identification of annular hurricanes. Wea. Forecasting, 23 , 1728.

    • Search Google Scholar
    • Export Citation
  • Knapp, K. R., and J. P. Kossin, 2007: A new global tropical cyclone data set from ISCCP B1 geostationary satellite observations. J. Appl. Remote Sensing, 1 , 013505. doi:10.1117/12.731296.

    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., W. H. Schubert, and M. T. Montgomery, 2000: Unstable interactions between a hurricane’s primary eyewall and a secondary ring of enhanced vorticity. J. Atmos. Sci., 57 , 38933917.

    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., K. R. Knapp, D. J. Vimont, R. J. Murnane, and B. A. Harper, 2007a: A globally consistent reanalysis of hurricane variability and trends. Geophys. Res. Lett., 34 , L04815. doi:10.1029/2006GL028836.

    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., and Coauthors, 2007b: Estimating hurricane wind structure in the absence of aircraft reconnaissance. Wea. Forecasting, 22 , 89101.

    • Search Google Scholar
    • Export Citation
  • Kuo, H-C., L-Y. Lin, C-P. Chang, and R. T. Williams, 2004: The formation of concentric vorticity structures in typhoons. J. Atmos. Sci., 61 , 27222734.

    • Search Google Scholar
    • Export Citation
  • Kwon, Y. C., and W. M. Frank, 2008: Dynamic instabilities of simulated hurricane-like vortices and their impacts on the core structure of hurricanes. Part II: Moist experiments. J. Atmos. Sci., 65 , 106122.

    • Search Google Scholar
    • Export Citation
  • Landsea, C. W., and Coauthors, 2004: A reanalysis of Hurricane Andrew’s intensity. Bull. Amer. Meteor. Soc., 85 , 16991712.

  • Molinari, J., and D. Vollaro, 1989: External influences on hurricane intensity. Part I: Outflow layer eddy angular momentum fluxes. J. Atmos. Sci., 46 , 10931105.

    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., and R. J. Kallenbach, 1997: A theory for vortex Rossby-waves and its application to spiral bands and intensity changes in hurricane. Quart. J. Roy. Meteor. Soc., 123 , 435465.

    • Search Google Scholar
    • Export Citation
  • Nong, S., and K. A. Emanuel, 2003: A numerical study of the genesis of concentric eyewalls in hurricane. Quart. J. Roy. Meteor. Soc., 129 , 33233338.

    • Search Google Scholar
    • Export Citation
  • Ooyama, K., 1969: Numerical simulation of the life cycle of tropical cyclones. J. Atmos. Sci., 26 , 340.

  • Rozoff, C. M., W. H. Schubert, B. D. McNoldy, and J. P. Kossin, 2006: Rapid filamentation zones in intense tropical cyclones. J. Atmos. Sci., 63 , 325340.

    • Search Google Scholar
    • Export Citation
  • Rozoff, C. M., W. H. Schubert, and J. P. Kossin, 2008: Some dynamical aspects of tropical cyclone concentric eyewalls. Quart. J. Roy. Meteor. Soc., 134 , 583593.

    • Search Google Scholar
    • Export Citation
  • Samsury, C. E., and E. J. Zipser, 1995: Secondary wind maxima in hurricanes: Airflow and relationship to rainbands. Mon. Wea. Rev., 123 , 35023517.

    • Search Google Scholar
    • Export Citation
  • Shapiro, L. J., and H. E. Willoughby, 1982: The response of balanced hurricanes to local sources of heat and momentum. J. Atmos. Sci., 39 , 378394.

    • Search Google Scholar
    • Export Citation
  • Terwey, W. D., and M. T. Montgomery, 2006: Modeled secondary eyewall and spiral band dynamics. Extended Abstracts, 27th Conf. on Hurricanes and Tropical Meteorology, Monterey, CA, Amer. Meteor. Soc., 2B.3.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., 2008: Rapid filamentation zone in a numerically simulated tropical cyclone. J. Atmos. Sci., 65 , 11581181.

  • Wilks, D. S., 2006: Statistical Methods in the Atmospheric Sciences. 2nd ed. International Geophysics Series, Vol. 91, Academic Press, 627 pp.

    • Search Google Scholar
    • Export Citation
  • Willoughby, H. E., and P. G. Black, 1996: Hurricane Andrew in Florida: Dynamics of a disaster. Bull. Amer. Meteor. Soc., 77 , 543549.

  • Willoughby, H. E., J. A. Clos, and M. Shoreibah, 1982: Concentric eye walls, secondary wind maxima, and the evolution of the hurricane vortex. J. Atmos. Sci., 39 , 395411.

    • Search Google Scholar
    • Export Citation
  • Wu, L., S. A. Braun, J. Halverson, and G. Heymsfield, 2006: A numerical study of Hurricane Erin (2001). Part I: Model verification and storm evolution. J. Atmos. Sci., 63 , 6586.

    • Search Google Scholar
    • Export Citation
  • Zhang, H., 2006: On the optimality of naïve Bayes with dependent binary features. Pattern Recog. Lett., 27 , 830837.

  • Zhu, T., D. L. Zhang, and F. Weng, 2004: Numerical simulation of Hurricane Bonnie (1998). Part I: Eyewall evolution and intensity changes. Mon. Wea. Rev., 132 , 225241.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 680 470 42
PDF Downloads 373 229 11

An Objective Model for Identifying Secondary Eyewall Formation in Hurricanes

View More View Less
  • 1 Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin—Madison, Madison, Wisconsin
Restricted access

Abstract

Hurricanes, and particularly major hurricanes, will often organize a secondary eyewall at some distance around the primary eyewall. These events have been associated with marked changes in the intensity and structure of the inner core, such as large and rapid deviations of the maximum wind and significant broadening of the surface wind field. While the consequences of rapidly fluctuating peak wind speeds are of great importance, the broadening of the overall wind field also has particularly dangerous consequences in terms of increased storm surge and wind damage extent during landfall events. Despite the importance of secondary eyewall formation in hurricane forecasting, there is presently no objective guidance to diagnose or forecast these events. Here a new empirical model is introduced that will provide forecasters with a probability of imminent secondary eyewall formation. The model is based on environmental and geostationary satellite features applied to a naïve Bayes probabilistic model and classification scheme. In independent testing, the algorithm performs skillfully against a defined climatology.

Corresponding author address: James P. Kossin, Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin—Madison, Madison, WI 53706. Email: kossin@ssec.wisc.edu

Abstract

Hurricanes, and particularly major hurricanes, will often organize a secondary eyewall at some distance around the primary eyewall. These events have been associated with marked changes in the intensity and structure of the inner core, such as large and rapid deviations of the maximum wind and significant broadening of the surface wind field. While the consequences of rapidly fluctuating peak wind speeds are of great importance, the broadening of the overall wind field also has particularly dangerous consequences in terms of increased storm surge and wind damage extent during landfall events. Despite the importance of secondary eyewall formation in hurricane forecasting, there is presently no objective guidance to diagnose or forecast these events. Here a new empirical model is introduced that will provide forecasters with a probability of imminent secondary eyewall formation. The model is based on environmental and geostationary satellite features applied to a naïve Bayes probabilistic model and classification scheme. In independent testing, the algorithm performs skillfully against a defined climatology.

Corresponding author address: James P. Kossin, Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin—Madison, Madison, WI 53706. Email: kossin@ssec.wisc.edu

Save