Baroclinicity Influences on Storm Divergence and Stratiform Rain: Subtropical Upper-Level Disturbances

Larry J. Hopper Jr. Department of Atmospheric Sciences, Texas A&M University, College Station, Texas

Search for other papers by Larry J. Hopper Jr. in
Current site
Google Scholar
PubMed
Close
and
Courtney Schumacher Department of Atmospheric Sciences, Texas A&M University, College Station, Texas

Search for other papers by Courtney Schumacher in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Divergence structures associated with the spectrum of precipitating systems in the subtropics and midlatitudes are not well documented. A mesoscale model is used to quantify the relative importance different baroclinic environments have on divergence profiles for storms primarily caused by upper-level disturbances in southeastern Texas, a subtropical region. The divergence profiles simulated for a subset of the modeled storms are consistent with those calculated from an S-band Doppler radar. Realistic convective and stratiform divergence signals are also generated when applying a two-dimensional convective–stratiform separation algorithm to reflectivities derived from the mesoscale model, although the model appears to underestimate stratiform rain area. Divergence profiles from the modeled precipitating systems vary in magnitude and structure across the wide range of baroclinicities common in southeastern Texas. Barotropic storms more characteristic of the tropics generate the most elevated divergence (and thus diabatic heating) structures with the largest magnitudes. In addition, stratiform rain regions in barotropic storms contain thicker, more elevated midlevel convergence signatures than more baroclinic storms. As the degree of baroclinicity increases, stratiform area fractions generally increase while the levels of nondivergence (LNDs) decrease. However, some weakly baroclinic storms contain stratiform area fractions and/or divergence profiles with magnitudes and LNDs that are similar to barotropic storms, despite having lower tropopause heights and less deep convection. Additional convection forms after the passage of barotropic and weakly baroclinic storms that contain elevated divergence signatures, circumstantially suggesting that heating at upper levels may cause diabatic feedbacks that help to drive regions of persistent convection in the subtropics.

Corresponding author address: Larry J. Hopper Jr., Dept. of Atmospheric Sciences, Texas A&M University, 3150 TAMU, College Station, TX 77843-3150. Email: lhopper@ariel.met.tamu.edu

Abstract

Divergence structures associated with the spectrum of precipitating systems in the subtropics and midlatitudes are not well documented. A mesoscale model is used to quantify the relative importance different baroclinic environments have on divergence profiles for storms primarily caused by upper-level disturbances in southeastern Texas, a subtropical region. The divergence profiles simulated for a subset of the modeled storms are consistent with those calculated from an S-band Doppler radar. Realistic convective and stratiform divergence signals are also generated when applying a two-dimensional convective–stratiform separation algorithm to reflectivities derived from the mesoscale model, although the model appears to underestimate stratiform rain area. Divergence profiles from the modeled precipitating systems vary in magnitude and structure across the wide range of baroclinicities common in southeastern Texas. Barotropic storms more characteristic of the tropics generate the most elevated divergence (and thus diabatic heating) structures with the largest magnitudes. In addition, stratiform rain regions in barotropic storms contain thicker, more elevated midlevel convergence signatures than more baroclinic storms. As the degree of baroclinicity increases, stratiform area fractions generally increase while the levels of nondivergence (LNDs) decrease. However, some weakly baroclinic storms contain stratiform area fractions and/or divergence profiles with magnitudes and LNDs that are similar to barotropic storms, despite having lower tropopause heights and less deep convection. Additional convection forms after the passage of barotropic and weakly baroclinic storms that contain elevated divergence signatures, circumstantially suggesting that heating at upper levels may cause diabatic feedbacks that help to drive regions of persistent convection in the subtropics.

Corresponding author address: Larry J. Hopper Jr., Dept. of Atmospheric Sciences, Texas A&M University, 3150 TAMU, College Station, TX 77843-3150. Email: lhopper@ariel.met.tamu.edu

Save
  • Bell, G., and J. Janowiak, 1995: Atmospheric circulation associated with the Midwest floods of 1993. Bull. Amer. Meteor. Soc., 76 , 681695.

    • Search Google Scholar
    • Export Citation
  • Blackadar, A. K., 1976: Modeling the nocturnal boundary layer. Preprints, Third Symp. on Atmospheric Turbulence, Diffusion and Air Quality, Raleigh, NC, Amer. Meteor. Soc., 46–49.

    • Search Google Scholar
    • Export Citation
  • Blackadar, A. K., 1979: High resolution models of the planetary boundary layer. Advances in Environmental Science and Engineering, J. Pfafflin and E. Ziegler, Eds., Vol. 1, Gordon and Breach, 50–85.

    • Search Google Scholar
    • Export Citation
  • Browning, K. A., and R. Wexler, 1968: The determination of kinematic properties of a wind field using Doppler radar. J. Appl. Meteor., 7 , 105113.

    • Search Google Scholar
    • Export Citation
  • Cifelli, R., and S. A. Rutledge, 1998: Vertical motion, diabatic heating, and rainfall characteristics in north Australia convective systems. Quart. J. Roy. Meteor. Soc., 124 , 11331162.

    • Search Google Scholar
    • Export Citation
  • DeMaria, M., 1985: Linear response of a stratified tropical atmosphere to convective forcing. J. Atmos. Sci., 42 , 19441959.

  • Dudhia, J., 1989: Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46 , 30773107.

    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1993: A nonhydrostatic version of the Penn State–NCAR mesoscale model: Validation tests and simulation of an Atlantic cyclone and cold front. Mon. Wea. Rev., 121 , 764787.

    • Search Google Scholar
    • Export Citation
  • Fritsch, J. M., and G. S. Forbes, 2001: Mesoscale convective systems. Severe Convective Storms, Meteor. Monogr., No. 9, Amer. Meteor. Soc., 323–357.

    • Search Google Scholar
    • Export Citation
  • Gamache, J. F., and R. A. Houze Jr., 1982: Mesoscale air motions associated with a tropical squall line. Mon. Wea. Rev., 110 , 118135.

    • Search Google Scholar
    • Export Citation
  • Grell, G. A., 1993: Prognostic evolution of assumptions used by cumulus parameterizations. Mon. Wea. Rev., 121 , 764787.

  • Hartmann, D. L., H. H. Hendon, and R. A. Houze Jr., 1984: Some implications of the mesoscale circulations in tropical cloud clusters for large-scale dynamics and climate. J. Atmos. Sci., 41 , 113121.

    • Search Google Scholar
    • Export Citation
  • Houze Jr., R. A., 1982: Cloud clusters and large-scale vertical motions in the tropics. J. Meteor. Soc. Japan, 60 , 396410.

  • Houze Jr., R. A., 1993: Cloud Dynamics. Academic Press, 570 pp.

  • Houze Jr., R. A., 1997: Stratiform precipitation in regions of convection: A meteorological paradox? Bull. Amer. Meteor. Soc., 78 , 21792196.

    • Search Google Scholar
    • Export Citation
  • Lang, S., W-K. Tao, J. Simpson, and B. Ferrier, 2003: Modeling of convective–stratiform precipitation processes: Sensitivity to partitioning methods. J. Appl. Meteor., 42 , 505527.

    • Search Google Scholar
    • Export Citation
  • Lin, Y-L., R. D. Farley, and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor., 22 , 10651092.

    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., 1993: Gregarious tropical convection. J. Atmos. Sci., 50 , 20262037.

  • Mapes, B. E., and R. A. Houze Jr., 1993: An integrated view of the 1987 Australian monsoon and its mesoscale convective systems. Part II: Vertical structure. Quart. J. Roy. Meteor. Soc., 119 , 733754.

    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., and R. A. Houze, 1995: Diabatic divergence profiles in western Pacific mesoscale convective systems. J. Atmos. Sci., 52 , 18071828.

    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., and J. Lin, 2005: Doppler radar observations of mesoscale wind divergence in regions of tropical convection. Mon. Wea. Rev., 133 , 18081824.

    • Search Google Scholar
    • Export Citation
  • Reisner, J., R. M. Rasmussen, and R. T. Bruintjes, 1998: Explicit forecasting of supercooled liquid water in winter storms using the MM5 mesoscale model. Quart. J. Roy. Meteor. Soc., 124 , 10711107.

    • Search Google Scholar
    • Export Citation
  • Schumacher, C., and R. A. Houze Jr., 2003: Stratiform rain in the tropics as seen by the TRMM precipitation radar. J. Climate, 16 , 17391756.

    • Search Google Scholar
    • Export Citation
  • Schumacher, C., and R. A. Houze Jr., 2006: Stratiform precipitation production over sub-Saharan Africa and the tropical East Atlantic as observed by TRMM. Quart. J. Roy. Meteor. Soc., 132 , 22352255.

    • Search Google Scholar
    • Export Citation
  • Schumacher, C., R. A. Houze Jr., and I. Kraucunas, 2004: The tropical dynamical response to latent heating estimates derived from the TRMM precipitation radar. J. Atmos. Sci., 61 , 13411358.

    • Search Google Scholar
    • Export Citation
  • Steiner, M., R. A. Houze Jr., and S. E. Yuter, 1995: Climatological characterization of three-dimensional storm structure from operational radar and rain gauge data. J. Appl. Meteor., 34 , 19782007.

    • Search Google Scholar
    • Export Citation
  • Stensrud, D. J., 1996: Effects of persistent, midlatitude mesoscale regions of convection on the large-scale environment during the warm season. J. Atmos. Sci., 53 , 35033527.

    • Search Google Scholar
    • Export Citation
  • Stensrud, D. J., and J. L. Anderson, 2001: Is midlatitude convection an active or passive player in producing global circulation patterns? J. Climate, 14 , 22222237.

    • Search Google Scholar
    • Export Citation
  • Stoelinga, M., 2005: Simulated equivalent reflectivity factor as currently formulated in RIP: Description and possible improvements. White paper, 5 pp. [Available online at http://www.atmos.washington.edu/%7estoeling/RIP_sim_ref.pdf.].

    • Search Google Scholar
    • Export Citation
  • Tao, W-K., and J. Simpson, 1993: Goddard cumulus ensemble model. Part I: Model description. Terr. Atmos. Oceanic Sci., 4 , 2572.

  • Wallace, J. M., and P. V. Hobbs, 1977: Atmospheric Science, An Introductory Survey. Academic Press, 467 pp.

  • Yuter, S. E., and R. A. Houze Jr., 1997: Measurements of raindrop size distributions over the Pacific warm pool and implications for Z–R relations. J. Appl. Meteor., 36 , 847867.

    • Search Google Scholar
    • Export Citation
  • Zhang, D-L., and R. A. Anthes, 1982: A high-resolution model of the planetary boundary layer—Sensitivity tests and comparisons with SESAME-79 data. J. Appl. Meteor., 21 , 15941609.

    • Search Google Scholar
    • Export Citation
  • Zhang, D-L., and J. M. Fritsch, 1986: Numerical simulation of the meso-β scale structure and evolution of the 1977 Johnstown flood. Part I: Model description and verification. J. Atmos. Sci., 43 , 19131943.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 187 61 8
PDF Downloads 108 40 2