Experiments with EOF-Based Perturbation Methods and Their Impact on the CPTEC/INPE Ensemble Prediction System

Antônio Marcos Mendonça Center for Weather Prediction and Climate Studies (CPTEC), National Institute for Space Research (INPE), Cachoeira Paulista, São Paulo, Brazil

Search for other papers by Antônio Marcos Mendonça in
Current site
Google Scholar
PubMed
Close
and
JoséPaulo Bonatti Center for Weather Prediction and Climate Studies (CPTEC), National Institute for Space Research (INPE), Cachoeira Paulista, São Paulo, Brazil

Search for other papers by JoséPaulo Bonatti in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The impact of modifications of the perturbation method based on empirical orthogonal functions (EOFs) used operationally upon the ensemble prediction system (EPS) at the Center for Weather Prediction and Climate Studies/National Institute for Space Research (CPTEC/INPE) is evaluated. The main changes proposed in this study are to apply the EOF method to perturb the midlatitudes, apply additional perturbations to the surface pressure (P) and specific humidity (Q) fields, and compute regional perturbations over South America. The impact of these modifications in the characteristics of the initial perturbations and in the quality of the EPS forecasts is investigated. The EPS forecasts are evaluated through average statistical scores over the period 15 December 2004–15 February 2005. The statistical scores used in the evaluation are pattern anomaly correlation, root-mean-square error, ensemble spread, Brier skill score, and perturbation versus error correlation analysis (PECA). Results indicate that with the inclusion of perturbations on P and Q, EOF-based perturbations acquire a more baroclinic structure. It is also observed that the simultaneous application of additional perturbations both in the extratropics and to the P and Q fields improves the performance of CPTEC EPS and enhances the quality of forecast perturbations. Moreover, regional EOF-based perturbations computed over South America have positive impact on the ensemble forecasts over the target region.

Corresponding author address: Antônio Mendonça, CPTEC/INPE, Rod. Presidente Dutra, Km 40, Cachoeira Paulista, CEP 12630-000, São Paulo, Brazil. Email: marcos.mendonca@cptec.inpe.br

Abstract

The impact of modifications of the perturbation method based on empirical orthogonal functions (EOFs) used operationally upon the ensemble prediction system (EPS) at the Center for Weather Prediction and Climate Studies/National Institute for Space Research (CPTEC/INPE) is evaluated. The main changes proposed in this study are to apply the EOF method to perturb the midlatitudes, apply additional perturbations to the surface pressure (P) and specific humidity (Q) fields, and compute regional perturbations over South America. The impact of these modifications in the characteristics of the initial perturbations and in the quality of the EPS forecasts is investigated. The EPS forecasts are evaluated through average statistical scores over the period 15 December 2004–15 February 2005. The statistical scores used in the evaluation are pattern anomaly correlation, root-mean-square error, ensemble spread, Brier skill score, and perturbation versus error correlation analysis (PECA). Results indicate that with the inclusion of perturbations on P and Q, EOF-based perturbations acquire a more baroclinic structure. It is also observed that the simultaneous application of additional perturbations both in the extratropics and to the P and Q fields improves the performance of CPTEC EPS and enhances the quality of forecast perturbations. Moreover, regional EOF-based perturbations computed over South America have positive impact on the ensemble forecasts over the target region.

Corresponding author address: Antônio Mendonça, CPTEC/INPE, Rod. Presidente Dutra, Km 40, Cachoeira Paulista, CEP 12630-000, São Paulo, Brazil. Email: marcos.mendonca@cptec.inpe.br

Save
  • Anderson, J. L., B. Wyman, S. Zhang, and T. Hoar, 2005: Assimilation of surface pressure observations using an ensemble filter in an idealized global atmospheric prediction system. J. Atmos. Sci., 62 , 29252938.

    • Search Google Scholar
    • Export Citation
  • Barkmeijer, J., R. Buizza, T. N. Palmer, K. Puri, and J-F. Mahfouf, 2001: Tropical singular vectors computed with linearized diabatic physics. Quart. J. Roy. Meteor. Soc., 127 , 685708.

    • Search Google Scholar
    • Export Citation
  • Bishop, C. H., B. J. Etherton, and S. Majumdar, 2001: Adaptive sampling with the ensemble transform Kalman filter. Part I: Theoretical aspects. Mon. Wea. Rev., 129 , 420436.

    • Search Google Scholar
    • Export Citation
  • Buizza, R., M. J. Miller, and T. N. Palmer, 1999: Stochastic simulation of model uncertainties in the ECMWF Ensemble Prediction System. Quart. J. Roy. Meteor. Soc., 125 , 28872908.

    • Search Google Scholar
    • Export Citation
  • Buizza, R., P. L. Houtekamer, Z. Toth, G. Pellerin, M. Wei, and Y. Zhu, 2005: A comparison of the ECMWF, MSC, and NCEP Global Ensemble Prediction Systems. Mon. Wea. Rev., 133 , 10761097.

    • Search Google Scholar
    • Export Citation
  • Cohn, S. E., A. Silva, J. Guo, M. Sienkiewicz, and D. Lamich, 1998: Assessing the effects of data selection with the DAO physical-space statistical analysis system. Mon. Wea. Rev., 126 , 29132926.

    • Search Google Scholar
    • Export Citation
  • Coutinho, M. M., 1999: Previsão por conjuntos utilizando perturbações baseadas em componentes principais (Ensemble prediction using principal-component-based perturbations). M.S. dissertation, Brazilian National Institute for Space Research (INPE), S. J. Campos, SP, Brazil, 136 pp.

  • Coutinho, M. M., B. J. Hoskins, and R. Buizza, 2004: The influence of physical processes on extratropical singular vectors. J. Atmos. Sci., 61 , 195209.

    • Search Google Scholar
    • Export Citation
  • Daley, R., and T. Mayer, 1986: Estimates of global analysis error from the global weather experiment observational network. Mon. Wea. Rev., 114 , 16421653.

    • Search Google Scholar
    • Export Citation
  • Derber, J., and F. Bouttier, 1999: A reformulation of the background error covariance in the ECMWF Global Data Assimilation System. Tellus, 51A , 195221.

    • Search Google Scholar
    • Export Citation
  • Farina, L., A. M. Mendonça, and J. P. Bonatti, 2005: Approximation of ensemble members in ocean wave prediction. Tellus, 57A , 204216.

    • Search Google Scholar
    • Export Citation
  • Grimm, A. M., and P. L. Silva Dias, 1995: Analysis of tropical–extratropical interactions with influence functions of a barotropic model. J. Atmos. Sci., 52 , 35383555.

    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., 2002: Ensemble-based data assimilation. Proc. Seminar on Predictability of Weather and Climate, Reading, United Kingdom, ECMWF, 83–105.

  • Hamill, T. M., C. Snyder, and J. S. Whitaker, 2003: Ensemble forecasts and the properties of flow-dependent analysis-error covariance singular vectors. Mon. Wea. Rev., 131 , 17411758.

    • Search Google Scholar
    • Export Citation
  • Holton, J. R., 2004: An Introduction to Dynamic Meteorology. 4th ed. Elsevier Academic Press, 535 pp.

  • Hoskins, B. J., and J. Karoly, 1981: The steady linear response of a spherical atmosphere to thermal and orographic forcing. J. Atmos. Sci., 38 , 11791196.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and P. J. Valdes, 1990: On the existence of storm-tracks. J. Atmos. Sci., 47 , 18541864.

  • Hoskins, B. J., R. Buizza, and J. Badger, 2000: The nature of singular growth and structure. Quart. J. Roy. Meteor. Soc., 126 , 15651580.

    • Search Google Scholar
    • Export Citation
  • Houtekamer, P. L., L. Lefaivrem, J. Derome, H. Ritchie, and H. L. Mitchell, 1996: A system simulation approach to ensemble prediction. Mon. Wea. Rev., 124 , 12251242.

    • Search Google Scholar
    • Export Citation
  • Houtekamer, P. L., H. L. Mitchell, G. Pellerin, M. Buehner, M. Charron, L. Spacek, and B. Hansen, 2005: Atmospheric data assimilation with an ensemble Kalman filter: Results with real observations. Mon. Wea. Rev., 133 , 604620.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., K. C. Mo, and J. Paegle, 1986: Large-amplitude, short-scale stationary Rossby waves in the Southern Hemisphere: Observations and mechanistic experiments to determine their origin. J. Atmos. Sci., 43 , 252275.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 2002: Data assimilation via local ensemble Kalman filtering. Proc. Seminar on Predictability of Weather and Climate, Reading, United Kingdom, ECMWF, 41–45.

  • Kanamitsu, M., W. Ebisuzaki, J. Woollen, S-K. Yang, J. J. Hnilo, M. Fiorino, and G. L. Potter, 2002: NCEP-DEO AMIP-II Reanalysis (R-2). Bull. Amer. Meteor. Soc., 83 , 16311643.

    • Search Google Scholar
    • Export Citation
  • Kinter, J. L., and Coauthors, 1997: Formulation. Vol. 1, The COLA atmosphere-biosphere general circulation model. COLA Rep. 51, COLA, 49 pp.

    • Search Google Scholar
    • Export Citation
  • Krishnamurti, T. N., C. M. Kishtawal, Z. Zhang, T. LaRow, D. Bachiochi, and E. Williford, 2000: Multimodel ensemble forecasts for weather and seasonal climate. J. Climate, 13 , 41964216.

    • Search Google Scholar
    • Export Citation
  • Legler, D. M., 1983: Empirical orthogonal function analysis of wind vectors over the tropical Pacific region. Bull. Amer. Meteor. Soc., 64 , 234241.

    • Search Google Scholar
    • Export Citation
  • Liebmann, B., and D. L. Hartmann, 1984: An observational study of tropical–midlatitude interaction on intraseasonal time scales during winter. J. Atmos. Sci., 41 , 33333350.

    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., 1963: Deterministic non-periodic flow. J. Atmos. Sci., 20 , 130141.

  • Lorenz, E. N., 1965: A study of the predictability of a 28-variable atmospheric model. Tellus, 17A , 321333.

  • Lorenz, E. N., 1969: The predictability of a flow which possesses many scales of motion. Tellus, 21A , 289307.

  • Mendonça, A. M., and J. P. Bonatti, 2006: Experiments with EOF-based perturbation method to ensemble weather forecasting in midlatitudes. Proc. Eighth Int. Conf. on Southern Hemisphere Meteorology and Oceanography, Foz do Iguaçu, Brazil, INPE, 1829–1832.

  • Mo, K. C., and R. W. Higgins, 1998: The Pacific–South American modes and tropical convection during the Southern Hemisphere winter. Mon. Wea. Rev., 126 , 15811596.

    • Search Google Scholar
    • Export Citation
  • Molteni, F., R. Buizza, T. N. Palmer, and T. Petroliagis, 1996: The ECMWF Ensemble Prediction System: Methodology and validation. Quart. J. Roy. Meteor. Soc., 122 , 73119.

    • Search Google Scholar
    • Export Citation
  • Ott, E., and Coauthors, 2004: A local ensemble Kalman filter for atmospheric data assimilation. Tellus, 56A , 415428.

  • Palmer, T. N., 1988: Large-scale tropical, extratropical interactions on time-scales of a few days to a season. Aust. Meteor. Mag., 36 , 107125.

    • Search Google Scholar
    • Export Citation
  • Puri, K., J. Barkmeijer, and T. N. Palmer, 2001: Ensemble prediction of tropical cyclones using targeted diabatic singular vectors. Quart. J. Roy. Meteor. Soc., 127 , 709731.

    • Search Google Scholar
    • Export Citation
  • Rabier, F., H. Järvinen, E. Klinker, J-F. Mahfouf, and A. Simmons, 2000: The ECMWF operational implementation of four-dimensional variational assimilation. I: Experimental results with simplified physics. Quart. J. Roy. Meteor. Soc., 126 , 11431170.

    • Search Google Scholar
    • Export Citation
  • Randel, W. J., and J. L. Stanford, 1985: The observed life cycle of a baroclinic instability. J. Atmos. Sci., 42 , 13641373.

  • Reynolds, C. A., P. J. Webster, and E. Kalnay, 1994: Random error growth in NMC’s global forecasts. Mon. Wea. Rev., 122 , 12811305.

  • Simmons, A. J., 1982: The forcing of stationary wave motion by tropical diabatic heating. Quart. J. Roy. Meteor. Soc., 108 , 503534.

  • Toth, Z., and E. Kalnay, 1993: Ensemble forecasting at NMC: The generation of perturbations. Bull. Amer. Meteor. Soc., 74 , 23172330.

  • Toth, Z., and E. Kalnay, 1997: Ensemble forecasting at NCEP and the breeding method. Mon. Wea. Rev., 125 , 32973319.

  • Wang, X., and C. H. Bishop, 2003: A comparison of breeding and ensemble transform Kalman filter ensemble forecast schemes. J. Atmos. Sci., 60 , 11401158.

    • Search Google Scholar
    • Export Citation
  • Wei, M., and Z. Toth, 2003: A new measure of ensemble performance: Perturbation versus Error Correlation Analysis (PECA). Mon. Wea. Rev., 131 , 15491565.

    • Search Google Scholar
    • Export Citation
  • Wei, M., Z. Toth, R. Wobus, Y. Zhu, C. H. Bishop, and X. Wang, 2006: Ensemble transform Kalman filter-based ensemble perturbations in an operational global prediction system at NCEP. Tellus, 58A , 2844.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 1995: Statistical Methods in the Atmospheric Sciences. Academic Press, 467 pp.

  • WMO, 1992: Manual on the global data-processing system. WMO 485, 217 pp.

  • Zhang, Z., 1997: Hurricane ensemble prediction using EOF-based perturbations. Ph.D. dissertation, Florida State University, Tallahassee, FL, 173 pp.

  • Zhang, Z., and T. N. Krishnamurti, 1999: A perturbation method for hurricane ensemble predictions. Mon. Wea. Rev., 127 , 447469.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 164 49 3
PDF Downloads 101 41 3