Evaluation of WRF Forecasts of Tornadic and Nontornadic Outbreaks When Initialized with Synoptic-Scale Input

Chad M. Shafer Cooperative Institute for Mesoscale Meteorological Studies, and School of Meteorology, University of Oklahoma, Norman, Oklahoma

Search for other papers by Chad M. Shafer in
Current site
Google Scholar
PubMed
Close
,
Andrew E. Mercer Cooperative Institute for Mesoscale Meteorological Studies, and School of Meteorology, University of Oklahoma, Norman, Oklahoma

Search for other papers by Andrew E. Mercer in
Current site
Google Scholar
PubMed
Close
,
Charles A. Doswell III Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, Norman, Oklahoma

Search for other papers by Charles A. Doswell III in
Current site
Google Scholar
PubMed
Close
,
Michael B. Richman School of Meteorology, University of Oklahoma, Norman, Oklahoma

Search for other papers by Michael B. Richman in
Current site
Google Scholar
PubMed
Close
, and
Lance M. Leslie School of Meteorology, University of Oklahoma, Norman, Oklahoma

Search for other papers by Lance M. Leslie in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Uncertainty exists concerning the links between synoptic-scale processes and tornado outbreaks. With continuously improving computer technology, a large number of high-resolution model simulations can be conducted to study these outbreaks to the storm scale, to determine the degree to which synoptic-scale processes appear to influence the occurrence of tornado outbreaks, and to determine how far in advance these processes are important. To this end, 50 tornado outbreak simulations are compared with 50 primarily nontornadic outbreak simulations initialized with synoptic-scale input using the Weather Research and Forecasting (WRF) mesoscale model to determine if the model is able to distinguish the outbreak type 1, 2, and 3 days in advance of the event. The model simulations cannot resolve tornadoes explicitly; thus, the use of meteorological covariates (in the form of numerous severe-weather parameters) is necessary to determine whether or not the model is predicting a tornado outbreak. Results indicate that, using the covariates, the WRF model can discriminate outbreak type consistently at least up to 3 days in advance. The severe-weather parameters that are most helpful in discriminating between outbreak types include low-level and deep-layer shear variables and the lifting condensation level. An analysis of the spatial structures and temporal evolution, as well as the magnitudes, of the severe-weather parameters is critical to diagnose the outbreak type correctly. Thermodynamic instability parameters are not helpful in distinguishing the outbreak type, primarily because of a strong seasonal dependence and convective modification in the simulations.

Corresponding author address: Chad Shafer, School of Meteorology, University of Oklahoma 120 David L. Boren Blvd., Suite 5900, Norman, OK 73072-7307. Email: cmshafer@ou.edu

Abstract

Uncertainty exists concerning the links between synoptic-scale processes and tornado outbreaks. With continuously improving computer technology, a large number of high-resolution model simulations can be conducted to study these outbreaks to the storm scale, to determine the degree to which synoptic-scale processes appear to influence the occurrence of tornado outbreaks, and to determine how far in advance these processes are important. To this end, 50 tornado outbreak simulations are compared with 50 primarily nontornadic outbreak simulations initialized with synoptic-scale input using the Weather Research and Forecasting (WRF) mesoscale model to determine if the model is able to distinguish the outbreak type 1, 2, and 3 days in advance of the event. The model simulations cannot resolve tornadoes explicitly; thus, the use of meteorological covariates (in the form of numerous severe-weather parameters) is necessary to determine whether or not the model is predicting a tornado outbreak. Results indicate that, using the covariates, the WRF model can discriminate outbreak type consistently at least up to 3 days in advance. The severe-weather parameters that are most helpful in discriminating between outbreak types include low-level and deep-layer shear variables and the lifting condensation level. An analysis of the spatial structures and temporal evolution, as well as the magnitudes, of the severe-weather parameters is critical to diagnose the outbreak type correctly. Thermodynamic instability parameters are not helpful in distinguishing the outbreak type, primarily because of a strong seasonal dependence and convective modification in the simulations.

Corresponding author address: Chad Shafer, School of Meteorology, University of Oklahoma 120 David L. Boren Blvd., Suite 5900, Norman, OK 73072-7307. Email: cmshafer@ou.edu

Save
  • Baldwin, M. E., J. S. Kain, and M. P. Kay, 2002: Properties of the convection scheme in NCEP’s Eta Model that affect forecast sounding interpretation. Wea. Forecasting, 17 , 1063–1079.

    • Search Google Scholar
    • Export Citation
  • Beebe, R. G., 1955: Types of air masses in which tornadoes occur. Bull. Amer. Meteor. Soc., 36 , 349–350.

  • Beebe, R. G., 1956: Tornado composite charts. Mon. Wea. Rev., 84 , 127–142.

  • Blackadar, A. K., 1957: Boundary layer wind maxima and their significance for the growth of nocturnal inversions. Bull. Amer. Meteor. Soc., 38 , 283–290.

    • Search Google Scholar
    • Export Citation
  • Brooks, H. E., C. A. Doswell III, and R. A. Maddox, 1992: On the use of mesoscale and cloud-scale models in operational forecasting. Wea. Forecasting, 7 , 352–362.

    • Search Google Scholar
    • Export Citation
  • Brooks, H. E., C. A. Doswell III, and J. Cooper, 1994a: On the environments of tornadic and nontornadic mesocyclones. Wea. Forecasting, 9 , 606–618.

    • Search Google Scholar
    • Export Citation
  • Brooks, H. E., C. A. Doswell III, and R. B. Wilhelmson, 1994b: On the role of midtropospheric winds in the evolution and maintenance of low-level mesocyclones. Mon. Wea. Rev., 122 , 126–136.

    • Search Google Scholar
    • Export Citation
  • Brooks, H. E., C. A. Doswell III, and M. P. Kay, 2003a: Climatological estimates of local daily tornado probability for the United States. Wea. Forecasting, 18 , 626–640.

    • Search Google Scholar
    • Export Citation
  • Brooks, H. E., J. W. Lee, and J. P. Craven, 2003b: The spatial distributions of severe thunderstorm and tornado environments from global reanalysis data. Atmos. Res., 67–68 , 73–94.

    • Search Google Scholar
    • Export Citation
  • Brown, B. G., and A. H. Murphy, 1996: Verification of aircraft icing forecasts: The use of standard measures and meteorological covariates. Preprints, 13th Conf. on Probability and Statistics in the Atmospheric Sciences, San Francisco, CA, Amer. Meteor. Soc., 251–252.

    • Search Google Scholar
    • Export Citation
  • Bunkers, M. J., 2002: Vertical wind shear associated with left-moving supercells. Wea. Forecasting, 17 , 845–855.

  • Colby Jr., F. P., 1984: Convective inhibition as a predictor of convection during AVE-SESAME II. Mon. Wea. Rev., 112 , 2239–2252.

  • Collins, W. G., and L. S. Gandin, 1990: Comprehensive hydrostatic quality control at the National Meteorological Center. Mon. Wea. Rev., 118 , 2754–2767.

    • Search Google Scholar
    • Export Citation
  • Collins, W. G., and L. S. Gandin, 1992: Complex quality control of rawinsonde heights and temperatures (CQCHT) at the National Meteorological Center. NMC Office Note 390, 30 pp. [Available from NOAA/NCEP, 5200 Auth Rd., Washington, DC 20233.].

    • Search Google Scholar
    • Export Citation
  • Coniglio, M. C., and D. J. Stensrud, 2004: Interpreting the climatology of derechos. Wea. Forecasting, 19 , 595–605.

  • Craven, J. P., H. E. Brooks, and J. A. Hart, 2002a: Baseline climatology of sounding derived parameters associated with deep, moist convection. Preprints, 21st Conf. on Severe Local Storms, San Antonio, TX, Amer. Meteor. Soc., 643–646.

    • Search Google Scholar
    • Export Citation
  • Craven, J. P., R. E. Jewell, and H. E. Brooks, 2002b: Comparison between observed convective cloud-base heights and lifting condensation level for two different lifted parcels. Wea. Forecasting, 17 , 885–890.

    • Search Google Scholar
    • Export Citation
  • Davies, J. M., and R. Johns, 1993: Some wind and instability parameters associated with strong and violent tornadoes. Part I: Wind shear and helicity. The Tornado: Its Structure, Dynamics, Prediction and Hazards, Geophys. Monogr., Vol. 79, Amer. Geophys. Union, 573–582.

    • Search Google Scholar
    • Export Citation
  • Davies-Jones, R., D. Burgess, and M. Foster, 1990: Test of helicity as a tornado forecast parameter. Preprints, 16th Conf. on Severe Local Storms, Kananaskis Park, AB, Canada, Amer. Meteor. Soc., 588–592.

    • Search Google Scholar
    • Export Citation
  • Deng, A., and D. R. Stauffer, 2006: On improving 4-km mesoscale model simulations. J. Appl. Meteor., 45 , 361–381.

  • Derber, J. D., D. F. Parrish, and S. J. Lord, 1991: The new global operational analysis system at the National Meteorological Center. Wea. Forecasting, 6 , 538–547.

    • Search Google Scholar
    • Export Citation
  • Doswell III, C. A., 2007a: Historical overview of severe convective storms research. Electron. J. Severe Storms Meteor., 2 (1) 1–25.

    • Search Google Scholar
    • Export Citation
  • Doswell III, C. A., 2007b: Small sample size and data quality issues illustrated using tornado occurrence data. Electron. J. Severe Storms Meteor., 2 (5) 1–16.

    • Search Google Scholar
    • Export Citation
  • Doswell III, C. A., and L. F. Bosart, 2001: Extratropical synoptic-scale processes and severe convection. Severe Convective Storms, Meteor. Monogr., No. 27, Amer. Meteor. Soc., 1–27.

    • Search Google Scholar
    • Export Citation
  • Doswell III, C. A., and J. S. Evans, 2003: Proximity sounding analysis for derechos and supercells: An assessment of similarities and differences. Atmos. Res., 67–68 , 117–133.

    • Search Google Scholar
    • Export Citation
  • Doswell III, C. A., R. H. Johns, and S. J. Weiss, 1993: Tornado forecasting: A review. The Tornado: Its Structure, Dynamics, Prediction and Hazards, Geophys. Monogr., Vol. 79, Amer. Geophys. Union, 557–571.

    • Search Google Scholar
    • Export Citation
  • Doswell III, C. A., H. E. Brooks, and M. P. Kay, 2005: Climatological estimates of daily local nontornadic severe thunderstorm probability for the United States. Wea. Forecasting, 20 , 577–595.

    • Search Google Scholar
    • Export Citation
  • Doswell III, C. A., R. Edwards, R. L. Thompson, J. A. Hart, and K. C. Crosbie, 2006: A simple and flexible method for ranking severe weather events. Wea. Forecasting, 21 , 939–951.

    • Search Google Scholar
    • Export Citation
  • Droegemeier, K. K., S. M. Lazarus, and R. Davies-Jones, 1993: The influence of helicity on numerically simulated convective storms. Mon. Wea. Rev., 121 , 2005–2029.

    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1989: Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46 , 3077–3107.

    • Search Google Scholar
    • Export Citation
  • Fawbush, W. J., and R. C. Miller, 1952: A mean sounding representative of the tornadic air mass environment. Bull. Amer. Meteor. Soc., 33 , 303–307.

    • Search Google Scholar
    • Export Citation
  • Fawbush, W. J., and R. C. Miller, 1954: A basis for forecasting peak wind gusts in non-frontal thunderstorms. Bull. Amer. Meteor. Soc., 35 , 14–19.

    • Search Google Scholar
    • Export Citation
  • Galway, J. G., 1975: Relationship of tornado deaths to severe weather watch areas. Mon. Wea. Rev., 103 , 737–741.

  • Galway, J. G., 1977: Some climatological aspects of tornado outbreaks. Mon. Wea. Rev., 105 , 477–484.

  • Glickman, T. S., Ed. 2000: Glossary of Meteorology. 2nd ed. Amer. Meteor. Soc., 855 pp.

  • Grazulis, T. P., 1993: Significant Tornadoes 1680-1991. Environmental Films, 1326 pp.

  • Grell, G. A., and D. Devenyi, 2002: A generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geophys. Res. Lett., 29 , 1693. doi:10.1029/2002GL015311.

    • Search Google Scholar
    • Export Citation
  • Hart, J. A., 1993: SVRPLOT: A new method of accessing and manipulating the NSSFC Severe Weather Database. Preprints, 17th Conf. on Severe Local Storms, St. Louis, MO, Amer. Meteor. Soc., 40–41.

    • Search Google Scholar
    • Export Citation
  • Hart, J. A., and W. Korotky, 1991: The SHARP workstation v1.50 users guide. NOAA/National Weather Service, 30 pp. [Available from NWS Eastern Region Headquarters, 630 Johnson Ave., Bohemia, NY 11716.].

    • Search Google Scholar
    • Export Citation
  • Holton, J. R., 1992: An Introduction to Dynamic Meteorology. 3rd ed. Academic Press, 511 pp.

  • Hong, S-Y., and H-L. Pan, 1996: Nonlocal boundary layer vertical diffusion in a medium-range forecast model. Mon. Wea. Rev., 124 , 2322–2339.

    • Search Google Scholar
    • Export Citation
  • Hong, S-Y., H-M. Juang, and Q. Zhao, 1998: Implementation of prognostic cloud scheme for a regional spectral model. Mon. Wea. Rev., 126 , 2621–2639.

    • Search Google Scholar
    • Export Citation
  • Horgan, K. L., D. L. Schultz, J. E. Hales Jr., S. F. Corfidi, and R. H. Johns, 2007: A five-year climatology of elevated severe convective storms in the United States east of the Rocky Mountains. Wea. Forecasting, 22 , 1031–1044.

    • Search Google Scholar
    • Export Citation
  • Igau, R. C., and J. W. Nielsen-Gammon, 1998: Low-level jet development during a numerically simulated return flow event. Mon. Wea. Rev., 126 , 2972–2990.

    • Search Google Scholar
    • Export Citation
  • James, R. P., P. M. Markowski, and J. M. Fritsch, 2006: Bow echo sensitivity to ambient moisture and cold pool strength. Mon. Wea. Rev., 134 , 950–964.

    • Search Google Scholar
    • Export Citation
  • Jankov, I., W. A. Gallus Jr., M. Segal, B. Shaw, and S. E. Koch, 2005: The impact of different WRF model physical parameterizations and their interactions on warm season MCS rainfall. Wea. Forecasting, 20 , 1048–1060.

    • Search Google Scholar
    • Export Citation
  • Ji, M., A. Kumar, and A. Leetmaa, 1994: A multiseason climate forecast system at the National Meteorological Center. Bull. Amer. Meteor. Soc., 75 , 557–569.

    • Search Google Scholar
    • Export Citation
  • Johns, R. H., 1984: A synoptic climatology of northwest-flow severe weather outbreaks. Part II: Meteorological parameters and synoptic patterns. Mon. Wea. Rev., 112 , 449–464.

    • Search Google Scholar
    • Export Citation
  • Johns, R. H., and C. A. Doswell III, 1992: Severe local storms forecasting. Wea. Forecasting, 7 , 588–612.

  • Johns, R. H., J. Davies, and P. Leftwich, 1993: Some wind and instability parameters associated with strong and violent tornadoes. Part II: Variations in the combinations of wind and instability parameters. The Tornado: Its Structure, Dynamics, Prediction and Hazards, Geophys. Monogr., Vol. 79, Amer. Geophys. Union, 583–590.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77 , 437–471.

  • Kanamitsu, M., 1989: Description of the NMC global data assimilation and forecast system. Wea. Forecasting, 4 , 334–342.

  • Kanamitsu, M., and Coauthors, 1991: Recent changes implemented into the global forecast system at NMC. Wea. Forecasting, 6 , 425–435.

    • Search Google Scholar
    • Export Citation
  • Kerr, B. W., and G. L. Darkow, 1996: Storm-relative winds and helicity in the tornadic thunderstorm environment. Wea. Forecasting, 11 , 489–505.

    • Search Google Scholar
    • Export Citation
  • Lin, Y-L., R. D. Farley, and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor., 22 , 1065–1092.

    • Search Google Scholar
    • Export Citation
  • Maddox, R. A., 1976: An evaluation of tornado proximity wind and stability data. Mon. Wea. Rev., 104 , 133–142.

  • Miller, R., 1972: Notes on analysis and severe-storm forecasting procedures of the Air Force Global Weather Center. Air Weather Service Tech. Rep. 200 (rev.), Air Weather Service, Scott Air Force Base, IL, 184 pp. [Available online at http://stinet.dtic.mil/cgi-bin/GetTRDoc?AD=AD744042&Location=U2&doc=GetTRDoc.pdf.].

    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102 , (D14). 16663–16682.

    • Search Google Scholar
    • Export Citation
  • Molinari, J., and M. Dudek, 1992: Parameterization of convective precipitation in mesoscale numerical models: A critical review. Mon. Wea. Rev., 120 , 326–344.

    • Search Google Scholar
    • Export Citation
  • Moller, A. R., 2001: Severe local storms forecasting. Severe Convective Storms, Meteor. Monogr., No. 50, Amer. Meteor. Soc., 433–480.

    • Search Google Scholar
    • Export Citation
  • Monteverdi, J. P., C. A. Doswell III, and G. S. Lipari, 2003: Shear parameter thresholds for forecasting tornadic thunderstorms in northern and central California. Wea. Forecasting, 18 , 357–370.

    • Search Google Scholar
    • Export Citation
  • Orlanski, I., 1975: A rational subdivision of scales for atmospheric processes. Bull. Amer. Meteor. Soc., 56 , 527–530.

  • Parrish, D. F., and J. C. Derber, 1992: The National Meteorological Center’s spectral statistical interpolation analysis system. Mon. Wea. Rev., 120 , 1747–1763.

    • Search Google Scholar
    • Export Citation
  • Pautz, M. E., 1969: Severe local storm occurrences, 1955-1967. ESSA Tech. Memo. WBTM FCST12, Washington, DC, 77 pp.

  • Porter, J. M., L. L. Means, J. E. Hovde, and W. B. Chappell, 1955: A synoptic study of squall lines in the north central United States. Bull. Amer. Meteor. Soc., 36 , 390–396.

    • Search Google Scholar
    • Export Citation
  • Rasmussen, E. N., and D. O. Blanchard, 1998: A baseline climatology of sounding-derived supercell and tornado forecast parameters. Wea. Forecasting, 13 , 1148–1164.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., and T. M. Smith, 1994: Improved global sea surface temperature analyses using optimum interpolation. J. Climate, 7 , 929–948.

    • Search Google Scholar
    • Export Citation
  • Schaefer, J. T., 1986: Severe thunderstorm forecasting: A historical perspective. Wea. Forecasting, 1 , 164–189.

  • Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, W. Wang, and J. G. Powers, 2005: A description of the Advanced Research WRF Version 2. NCAR Tech. Note NCAR/TN-468+STR, 88 pp. [Available from UCAR Communications, P.O. Box 3000, Boulder, CO 80307.].

    • Search Google Scholar
    • Export Citation
  • Stensrud, D. J., 1996: Importance of low-level jets to climate: A review. J. Climate, 9 , 1698–1711.

  • Stensrud, D. J., and J. M. Fritsch, 1994: Mesoscale convective systems in weakly forced large-scale environments. Part III: Numerical simulations and implications for numerical forecasting. Mon. Wea. Rev., 122 , 2084–2104.

    • Search Google Scholar
    • Export Citation
  • Stensrud, D. J., J. V. Cortinas, and H. E. Brooks, 1997: Discriminating between tornadic and nontornadic thunderstorms using mesoscale model output. Wea. Forecasting, 12 , 613–632.

    • Search Google Scholar
    • Export Citation
  • Thompson, R. L., and R. Edwards, 2000: An overview of environmental conditions and forecast implications of the 3 May 1999 tornado outbreak. Wea. Forecasting, 15 , 682–699.

    • Search Google Scholar
    • Export Citation
  • Thompson, R. L., R. Edwards, J. A. Hart, K. L. Elmore, and P. Markowski, 2003: Close proximity soundings with supercell environments obtained from the Rapid Update Cycle. Wea. Forecasting, 18 , 1243–1261.

    • Search Google Scholar
    • Export Citation
  • Wicker, L. J., and W. C. Skamarock, 2002: Time splitting methods for elastic models using forward time schemes. Mon. Wea. Rev., 130 , 2088–2097.

    • Search Google Scholar
    • Export Citation
  • Woollen, J. S., 1991: New NMC operational OI quality control. Preprints, Ninth Conf. on Numerical Weather Prediction, Denver, CO, Amer. Meteor. Soc., 24–27.

    • Search Google Scholar
    • Export Citation
  • Woollen, J. S., E. Kalnay, L. Gandin, W. Collins, S. Saba, R. Kistler, M. Kanamitsu, and M. Chelliah, 1994: Quality control in the reanalysis system. Preprints, 10th Conf. on Numerical Weather Prediction, Portland, OR, Amer. Meteor. Soc., 13–14.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 724 170 27
PDF Downloads 311 125 16