• Ackerman, T. P., and G. M. Stokes, 2003: The Atmospheric Radiation Measurement Program. Phys. Today, 56 , 3844.

  • Alexander, M. J., P. T. May, and J. H. Beres, 2004: Gravity waves generated by convection in the Darwin area during the Darwin Area Wave Experiment. J. Geophys. Res., 109 , D20S04. doi:10.1029/2004JD004729.

    • Search Google Scholar
    • Export Citation
  • Anderberg, M. R., 1973: Cluster Analysis for Applications. Academic Press, 359 pp.

  • Boccippio, D., W. Petersen, and D. Cecil, 2005: The tropical convective spectrum. Part I: Archetypal vertical structures. J. Climate, 18 , 27442769.

    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., G-J. Huang, V. Chandrasekar, and T. D. Keenan, 2001: An areal rainfall estimator using differential propagation phase: Evaluation using a C-band radar and a dense gauge network in the Tropics. J. Atmos. Oceanic Technol., 18 , 18101818.

    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., T. Tang, and V. Chandrasekar, 2004: Evaluation of a new polarimetrically-based Z–R relation. J. Atmos. Oceanic Technol., 21 , 612622.

    • Search Google Scholar
    • Export Citation
  • Carbone, R. E., J. W. Wilson, T. D. Keenan, and J. M. Hacker, 2000: Tropical island convection in the absence of significant topography. Part I: Life cycle of diurnally forced convection. Mon. Wea. Rev., 128 , 34593480.

    • Search Google Scholar
    • Export Citation
  • Carey, L. D., and S. A. Rutledge, 2000: The relationship between precipitation and lightning in tropical island convection: A C-Band polarimetric radar study. Mon. Wea. Rev., 128 , 26872710.

    • Search Google Scholar
    • Export Citation
  • Cetrone, J., and R. A. Houze Jr., 2006: Characteristics of tropical convection over the ocean near Kwajalein. Mon. Wea. Rev., 134 , 834853.

    • Search Google Scholar
    • Export Citation
  • Crook, N. A., 2001: Understanding Hector: The dynamics of island thunderstorms. Mon. Wea. Rev., 129 , 15501563.

  • Demott, C. A., and S. A. Rutledge, 1998: The vertical structure of TOGA COARE convection. Part I: Radar echo distributions. J. Atmos. Sci., 55 , 27302747.

    • Search Google Scholar
    • Export Citation
  • Drosdowsky, W., 1996: Variability of the Australian summer monsoon at Darwin: 1957–1992. J. Climate, 9 , 8596.

  • Gray, W. M., and R. W. Jacobson, 1977: Diurnal variation of deep cumulus convection. Mon. Wea. Rev., 105 , 11711188.

  • Gunn, B. W., J. L. McBride, G. J. Holland, T. D. Keenan, and N. E. Davidson, 1989: The Australian summer monsoon circulation during AMEX phase II. Mon. Wea. Rev., 117 , 25542574.

    • Search Google Scholar
    • Export Citation
  • Hamilton, K., R. A. Vincent, and P. T. May, 2004: Darwin Area Wave Experiment (DAWEX) field campaign to study gravity wave generation and propagation. J. Geophys. Res., 109 , D20S01. doi:10.1029/2003JD004393.

    • Search Google Scholar
    • Export Citation
  • Höglund, S., 2005: Clouds in Darwin and their relation to large-scale conditions. M.S. thesis, Department of Applied Physics and Mechanical Engineering, Division of Physics, Lulea University of Technology, Lulea, Sweden, 61[Available online at http://epubl.luth.se/1402-1617/2005/169/LTU-EX-05169-SE.pdf.].

  • Holland, G. J., J. L. McBride, R. K. Smith, D. Jasper, and T. D. Keenan, 1986: The BMRC Australian Monsoon Experiment. Bull. Amer. Meteor. Soc., 67 , 14661472.

    • Search Google Scholar
    • Export Citation
  • Houze Jr., R. A., 1987: Mesoscale organization and cloud microphysics in a Bay of Bengal depression. J. Atmos. Sci., 44 , 18461867.

  • Houze Jr., R. A., 1993: NimboStratus. Cloud Dynamics, R. Dmowska and J. R. Holton, Eds., Vol. 53, Academic Press, 196–220.

  • Houze Jr., R. A., 1997: Stratiform precipitation in regions of convection: A meteorological paradox? Bull. Amer. Meteor. Soc., 78 , 21792196.

    • Search Google Scholar
    • Export Citation
  • Houze Jr., R. A., and D. D. Churchill, 1984: Microphysical structure of winter monsoon cloud clusters. J. Atmos. Sci., 41 , 34053411.

  • Houze Jr., R. A., C-P. Cheng, C. A. Leary, and J. F. Gamache, 1980: Diagnosis of cloud mass and heat fluxes from radar and synoptic data. J. Atmos. Sci., 37 , 754773.

    • Search Google Scholar
    • Export Citation
  • Houze Jr., R. A., S. G. Geotis, F. D. Marks, D. D. Churchill, and P. H. Herzegh, 1981: Comparison of airborne and land-based radar measurements of precipitation during winter MONEX. J. Appl. Meteor., 20 , 772783.

    • Search Google Scholar
    • Export Citation
  • Jakob, C., and G. Tselioudis, 2003: Objective identification of cloud regimes in the Tropical Western Pacific. Geophys. Res. Lett., 30 , 2082. doi:10.1029/2003GL018367.

    • Search Google Scholar
    • Export Citation
  • Jakob, C., G. Tselioudis, and T. Hume, 2005: The radiative, cloud, and thermodynamic properties of the major tropical western Pacific cloud regimes. J. Climate, 18 , 12031215.

    • Search Google Scholar
    • Export Citation
  • Kawashima, M., Y. Fujiyoshi, M. Oh, T. Honda, T. Kozu, T. Shimomat, and H. Hashiguchi, 2006: Overview of Doppler radar observations of precipitating cloud systems in Sumatera Island during the first CPEA campaign. J. Meteor. Soc. Japan, 84A , 3356.

    • Search Google Scholar
    • Export Citation
  • Keenan, T. D., and R. E. Carbone, 1992: A preliminary morphology of precipitation systems in tropical northern Australia. Quart. J. Roy. Meteor. Soc., 118 , 283326.

    • Search Google Scholar
    • Export Citation
  • Keenan, T. D., and S. A. Rutledge, 1993: Mesoscale characteristics of monsoonal convection and associated stratiform precipitation. Mon. Wea. Rev., 121 , 352374.

    • Search Google Scholar
    • Export Citation
  • Keenan, T. D., J. McBride, G. Holland, N. Davidson, and B. Gunn, 1989: Diurnal variations during the Australian Monsoon Experiment (AMEX) phase II. Mon. Wea. Rev., 117 , 25352552.

    • Search Google Scholar
    • Export Citation
  • Keenan, T. D., K. Glasson, F. Cummings, T. S. Bird, J. Keeler, and J. Lutz, 1998: The BMRC/NCAR C-Band Polarimetric (C-POL) radar system. J. Atmos. Oceanic Technol., 15 , 871886.

    • Search Google Scholar
    • Export Citation
  • Keenan, T. D., and Coauthors, 2000: The Maritime Continent Thunderstorm Experiment (MC-TEX): Overview and some results. Bull. Amer. Meteor. Soc., 81 , 24332455.

    • Search Google Scholar
    • Export Citation
  • Lin, J., B. Mapes, M. Zhang, and M. Newman, 2004: Stratiform precipitation, vertical heating profiles, and the Madden–Julian oscillation. J. Atmos. Sci., 61 , 296309.

    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., 1993: Gregarious tropical convection. J. Atmos. Sci., 50 , 20262037.

  • Mapes, B. E., and R. A. Houze Jr., 1993: Cloud clusters and superclusters over the oceanic warm pool. Mon. Wea. Rev., 121 , 13981415.

  • Mapes, B. E., and J. Lin, 2005: Doppler radar observations of mesoscale wind divergence in regions of tropical convection. Mon. Wea. Rev., 133 , 18081824.

    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., S. Tulich, J. Lin, and P. Zuidema, 2006: The mesoscale convection life cycle: Building block or prototype for large-scale tropical waves. Dyn. Atmos. Oceans, 42 , 329.

    • Search Google Scholar
    • Export Citation
  • May, P. T., T. D. Keenan, D. S. Zrnić, L. D. Carey, and S. A. Rutledge, 1999: Polarimetric radar measurements of tropical rain at a 5-cm wavelength. J. Appl. Meteor., 38 , 750765.

    • Search Google Scholar
    • Export Citation
  • May, P. T., J. H. Mather, G. Vaughan, C. Jakob, G. M. McFaquhar, K. Bower, and G. G. Mace, 2005: The Tropical Warm Pool International Cloud Experiment (TWP-ICE). Bull. Aust. Meteor. Oceanogr. Soc., 18 , 109110.

    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., G. A. Wick, F. M. Ralph, B. E. Martner, A. B. White, and D. E. Kingsmill, 2005: Wintertime nonbrightband rain in California and Oregon during CALJET and PACJET: Geographic, interannual, and synoptic variability. Mon. Wea. Rev., 133 , 11991223.

    • Search Google Scholar
    • Export Citation
  • Nesbitt, S. W., and E. Zipser, 2003: The diurnal cycle of rainfall and convective intensity according to three years of TRMM measurements. J. Climate, 16 , 14561475.

    • Search Google Scholar
    • Export Citation
  • Nesbitt, S. W., E. J. Zipser, and D. J. Cecil, 2000: A census of precipitation features in the Tropics using TRMM: Radar, ice scattering, and lightning observations. J. Climate, 13 , 40874106.

    • Search Google Scholar
    • Export Citation
  • Nesbitt, S. W., R. Cifelli, and S. A. Rutledge, 2006: Storm morphology and rainfall characteristics of TRMM precipitation features. Mon. Wea. Rev., 134 , 27022721.

    • Search Google Scholar
    • Export Citation
  • Orlanski, I., 1975: A rational subdivision of scales for atmospheric processes. Bull. Amer. Meteor. Soc., 56 , 527530.

  • Pautet, P-D., M. J. Taylor, A. Z. Liu, and G. R. Swenson, 2005: Climatology of short-period gravity waves observed over northern Australia during the Darwin Area Wave Experiment (DAWEX) and their dominant source regions. J. Geophys. Res., 110 , D03S90. doi:10.1029/2004JD004954.

    • Search Google Scholar
    • Export Citation
  • Rickenbach, T. M., and S. Rutledge, 1998: Convection in TOGA COARE: Horizontal scale, morphology, and rainfall production. J. Atmos. Sci., 55 , 27152729.

    • Search Google Scholar
    • Export Citation
  • Rossow, W. B., G. Tselioudis, A. Polak, and C. Jakob, 2005: Tropical climate described as a distribution of weather states indicated by distinct mesoscale cloud property mixtures. Geophys. Res. Lett., 32 , L21812. doi:10.1029/2005GL024584.

    • Search Google Scholar
    • Export Citation
  • Schiffer, R. A., and W. B. Rossow, 1983: The International Satellite Cloud Climatology Project (ISCCP): The first project of the World Climate Research Programme. Bull. Amer. Meteor. Soc., 64 , 779784.

    • Search Google Scholar
    • Export Citation
  • Schumacher, C., and R. A. Houze Jr., 2003: Stratiform rain in the Tropics as seen by the TRMM Precipitation Radar. J. Climate, 16 , 17391756.

    • Search Google Scholar
    • Export Citation
  • Schumacher, C., R. A. Houze Jr., and I. Kraucunas, 2004: The tropical dynamical response to latent heating estimates derived from the TRMM Precipitation Radar. J. Atmos. Sci., 61 , 13411358.

    • Search Google Scholar
    • Export Citation
  • Steiner, M., R. A. Houze Jr., and S. E. Yuter, 1995: Climatological characterization of three-dimensional storm structure from operational radar and rain gauge data. J. Appl. Meteor., 34 , 19782007.

    • Search Google Scholar
    • Export Citation
  • Tao, W-K., and Coauthors, 2006: Retrieval of latent heating from TRMM measurements. Bull. Amer. Meteor. Soc., 87 , 15551572.

  • Toracinta, E. R., D. J. Cecil, E. J. Zipser, and S. W. Nesbitt, 2002: Radar, passive microwave, and lightning characteristics of precipitating systems in the Tropics. Mon. Wea. Rev., 130 , 802824.

    • Search Google Scholar
    • Export Citation
  • Yang, G-Y., and J. Slingo, 2001: The diurnal cycle in the Tropics. Mon. Wea. Rev., 129 , 784801.

  • Yuter, S. E., and R. A. Houze Jr., 1995: Three-dimensional kinematic and microphysical evolution of Florida cumulonimbus. Part II: Frequency distributions of vertical velocity, reflectivity, and differential reflectivity. Mon. Wea. Rev., 123 , 19411963.

    • Search Google Scholar
    • Export Citation
  • Zipser, E. J., D. J. Cecil, C. Liu, S. W. Nesbitt, and D. P. Yorty, 2006: Where are the most intense thunderstorms on Earth? Bull. Amer. Meteor. Soc., 87 , 10571071.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 191 140 0
PDF Downloads 69 32 0

Objective Classification of Precipitating Convective Regimes Using a Weather Radar in Darwin, Australia

View More View Less
  • 1 Monash University, Melbourne, Victoria, Australia
  • | 2 Bureau of Meteorology Research Centre, Melbourne, Victoria, Australia
  • | 3 Monash University, Melbourne, Victoria, Australia
  • | 4 Bureau of Meteorology Research Centre, Melbourne, Victoria, Australia
Restricted access

Abstract

A clustering algorithm was applied to Frequency with Altitude Diagrams (FADs) derived from 4 yr of hourly radar data to objectively define four tropical precipitation regimes that occur during the wet season over Darwin Australia. The precipitation regimes defined are distinguished in terms of convective intensity, presence of stratiform precipitation, and precipitation coverage. Regime 1 consists of patchy convection of medium intensity and low area coverage, and regime 2 contains strong convection with relatively small area coverage. Regime 3 is composed of weak convection with large area coverage and large stratiform regions, and regime 4 contains strong convection with large area coverage and large stratiform regions. Analysis of the seasonal cycle, diurnal cycle, and regime occurrence as a function of monsoon activity all provide insight into the different physical character of the precipitation regimes. Two of the regimes exhibit a diurnal cycle with a peak in the afternoon, while the other two show a peak in their frequency of occurrence in the early morning. The different character of the regimes is also confirmed by the varying contributions that convective and stratiform rainfall make to the overall within-regime precipitation.

Corresponding author address: Simon Caine, School of Mathematical Sciences, Monash University, 3800 Melbourne, VIC, Australia. Email: simon.caine@sci.monash.edu.au

Abstract

A clustering algorithm was applied to Frequency with Altitude Diagrams (FADs) derived from 4 yr of hourly radar data to objectively define four tropical precipitation regimes that occur during the wet season over Darwin Australia. The precipitation regimes defined are distinguished in terms of convective intensity, presence of stratiform precipitation, and precipitation coverage. Regime 1 consists of patchy convection of medium intensity and low area coverage, and regime 2 contains strong convection with relatively small area coverage. Regime 3 is composed of weak convection with large area coverage and large stratiform regions, and regime 4 contains strong convection with large area coverage and large stratiform regions. Analysis of the seasonal cycle, diurnal cycle, and regime occurrence as a function of monsoon activity all provide insight into the different physical character of the precipitation regimes. Two of the regimes exhibit a diurnal cycle with a peak in the afternoon, while the other two show a peak in their frequency of occurrence in the early morning. The different character of the regimes is also confirmed by the varying contributions that convective and stratiform rainfall make to the overall within-regime precipitation.

Corresponding author address: Simon Caine, School of Mathematical Sciences, Monash University, 3800 Melbourne, VIC, Australia. Email: simon.caine@sci.monash.edu.au

Save