• Atkinson, K. E., 1988: An Introduction to Numerical Analysis. John Wiley & Sons, Inc., 693 pp.

  • Atlas, R., 1997: Atmospheric observations and experiments to assess their usefulness in data assimilation. J. Meteor. Soc. Japan, 75 , (1B). 111130.

    • Search Google Scholar
    • Export Citation
  • Baker, N. L., and R. Daley, 2000: Observation and background adjoint sensitivity in the adaptive observation-targeting problem. Quart. J. Roy. Meteor. Soc., 126 , 14311454.

    • Search Google Scholar
    • Export Citation
  • Bloom, S. C., L. L. Takacs, A. M. da Silva, and D. Ledvina, 1996: Data assimilation using incremental analysis updates. Mon. Wea. Rev., 124 , 12561271.

    • Search Google Scholar
    • Export Citation
  • Chou, M-D., and M. J. Suarez, 1999: A shortwave radiation parameterization for atmospheric studies. Vol. 15, NASA Tech. Memo. 104606, 40 pp.

    • Search Google Scholar
    • Export Citation
  • Collins, N., and Coauthors, 2005: Design and implementation of components in the earth system modeling framework. Int. J. High Perform. Comput. Appl., 19 , 341350.

    • Search Google Scholar
    • Export Citation
  • Courtier, P., J. N. Thépaut, and A. Hollingsworth, 1994: A strategy of operational implementation of 4D-Var using an incremental approach. Quart. J. Roy. Meteor. Soc., 120 , 13671388.

    • Search Google Scholar
    • Export Citation
  • Daescu, D. N., 2008: On the sensitivity equations of four-dimensional variational (4D-Var) data assimilation. Mon. Wea. Rev., 136 , 30503065.

    • Search Google Scholar
    • Export Citation
  • Daley, R., 1991: Atmospheric Data Analysis. Cambridge University Press, 457 pp.

  • Derber, J. C., and A. Rosati, 1989: A global oceanic data assimilation technique. J. Phys. Oceanogr., 19 , 13331347.

  • Derber, J. C., and W-S. Wu, 1998: The use of TOVS cloud-cleared radiances in the NCEP SSI analysis system. Mon. Wea. Rev., 126 , 22872299.

    • Search Google Scholar
    • Export Citation
  • Doerenbecher, A., and T. Bergot, 2001: Sensitivity to observations applied to FASTEX cases. Nonlinear Processes Geophys., 8 , 467481.

  • Dunlavy, D. M., and D. P. O’Leary, 2005: Homotopy optimization methods for global optimization. Sandia National Laboratories, Rep. SAND2005-7495, 32 pp.

    • Search Google Scholar
    • Export Citation
  • Errico, R. M., 2007: Interpretations of an adjoint-derived observational impact measure. Tellus, 59A , 273276.

  • Errico, R. M., R. Gelaro, E. Novakovskaia, and R. Todling, 2007: General characteristics of stratospheric singular vectors. Meteor. Z., 16 (6) 621634.

    • Search Google Scholar
    • Export Citation
  • Fourrié, N., A. Doerenbecher, T. Bergot, and A. Joly, 2002: Adjoint sensitivity of the forecast to TOVS observations. Quart. J. Roy. Meteor. Soc., 128 , 27592777.

    • Search Google Scholar
    • Export Citation
  • Gelaro, R., Y. Zhu, and R. M. Errico, 2007: Examination of various-order adjoint-based approximations of observation impact. Meteor. Z., 16 (6) 685692.

    • Search Google Scholar
    • Export Citation
  • Giering, R., T. Kaminski, R. Todling, and S-J. Lin, 2003: Generating the tangent linear and adjoint models of the DAO finite volume GCM’s dynamical core by means of TAF. Geophysical Research Abstracts, 5 .Abstract 11680. [Available online at http://www.cosis.net/abstracts/EAE03/11680/EAE03-J-11680.pdf.].

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., 2002: Atmospheric Modeling, Data Assimilation and Predictability. Cambridge University Press, 364 pp.

  • Kelly, G., J. N. Thépaut, R. Buizza, and C. Cardinali, 2007: The value of observations. I: Data denial experiments for the Atlantic and the Pacific. Quart. J. Roy. Meteor. Soc., 133 , 18031815.

    • Search Google Scholar
    • Export Citation
  • Kleespies, T. J., P. van Delst, L. M. McMillin, and J. Derber, 2004: Atmospheric transmittance of an absorbing gas. 6. OPTRAN status report and introduction to the NES-DIS/NCEP Community Radiative Transfer Model. Appl. Opt., 43 , 31033109.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., M. J. Suarez, A. Ducharne, M. Stieglitz, and P. Kumar, 2000: A catchment-based approach to modeling land surface processes in a GCM. Part I: Model structure. J. Geophys. Res., 105 , 2480924822.

    • Search Google Scholar
    • Export Citation
  • Langland, R. H., 2005: Observation impact during the North Atlantic TReC-2003. Mon. Wea. Rev., 133 , 22972309.

  • Langland, R. H., and N. L. Baker, 2004: Estimation of observation impact using the NRL atmospheric variational data assimilation adjoint system. Tellus, 56A , 189201.

    • Search Google Scholar
    • Export Citation
  • Le Dimet, F. X., I. M. Navon, and D. N. Daescu, 2002: Second order information in data assimilation. Mon. Wea. Rev., 130 , 629648.

  • Lin, S-J., 2004: A vertically Lagrangian finite-volume dynamical core for global models. Mon. Wea. Rev., 132 , 22932307.

  • Liu, J., and E. Kalnay, 2008: Estimating observation impact without adjoint model in an ensemble Kalman filter. Quart. J. Roy. Meteor. Soc.,, 134 , 13271335.

    • Search Google Scholar
    • Export Citation
  • Moorthi, S., and M. J. Suarez, 1992: Relaxed Arakawa–Schubert: A parameterization of moist convection for general circulation models. Mon. Wea. Rev., 120 , 9781002.

    • Search Google Scholar
    • Export Citation
  • Ortega, J. M., and W. C. Rheinboldt, 1970: Iterative Solution of Nonlinear Equations in Several Variables. Academic Press, Inc., 572 pp.

    • Search Google Scholar
    • Export Citation
  • Rienecker, M. M., and Coauthors, 2008: The GEOS-5 Data Assimilation System—Documentation of versions 5.0.1, 5.1.0, and 5.2.0. NASA/TM-2008-104606, Vol. 27, Tech. Rep. Series on Global Modeling and Data Assimilation, 118 pp.

    • Search Google Scholar
    • Export Citation
  • Stieglitz, M., A. Ducharne, R. D. Koster, and M. J. Suarez, 2001: The impact of detailed snow physics on the simulation of snow cover and subsurface thermodynamics at continental scales. J. Hydrometeor., 2 , 228242.

    • Search Google Scholar
    • Export Citation
  • Trémolet, Y., 2007: First-order and higher-order approximations of observation impact. Meteor. Z., 16 (6) 693694.

  • Trémolet, Y., 2008: Computation of observation sensitivity and observation impact in incremental variational data assimilation. Tellus, 60A , 964978. doi:10.1111/j.1600–0870.2008.00349.x.

    • Search Google Scholar
    • Export Citation
  • Watson, L. T., 2000: Theory of globally convergent probability-one homotopies for nonlinear programming. SIAM J. Optim., 11 , 761780.

  • Wu, W. S., R. J. Purser, and D. F. Parrish, 2002: Three-dimensional variational analysis with spatially inhomogeneous covariances. Mon. Wea. Rev., 130 , 29052916.

    • Search Google Scholar
    • Export Citation
  • Zhu, Y., and R. Gelaro, 2008: Observation sensitivity calculations using the adjoint of the Gridpoint Statistical Interpolation (GSI) analysis system. Mon. Wea. Rev., 136 , 335351.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 86 45 0
PDF Downloads 42 19 0

Adjoint Estimation of the Variation in Model Functional Output due to the Assimilation of Data

View More View Less
  • 1 Portland State University, Portland, Oregon
  • | 2 Global Modeling and Assimilation Office, NASA GSFC, Greenbelt, Maryland
Restricted access

Abstract

A parametric approach to the adjoint estimation of the variation in model functional output due to the assimilation of data is considered as a tool to analyze and develop observation impact measures. The parametric approach is specialized to a linear analysis scheme and it is used to derive various high-order approximation equations. This framework includes the Kalman filter and incremental three-and four-dimensional variational data assimilation schemes implementing a single outer loop iteration. Distinction is made between Taylor series methods and numerical quadrature methods. The novel quadrature approximations require minimal additional software development and are suitable for testing and implementation at operational numerical weather prediction centers where a data assimilation system (DAS) and the associated adjoint DAS are in place. Their potential use as tools for observation impact estimates needs to be further investigated. Preliminary numerical experiments are provided using the fifth-generation NASA Goddard Earth Observing System (GEOS-5) atmospheric DAS.

* Additional affiliation: Science Applications International Corporation, Beltsville, Maryland.

Corresponding author address: Dr. Dacian N. Daescu, Department of Mathematics and Statistics, Portland State University, P.O. Box 751, Portland, OR 97207. Email: daescu@pdx.edu

Abstract

A parametric approach to the adjoint estimation of the variation in model functional output due to the assimilation of data is considered as a tool to analyze and develop observation impact measures. The parametric approach is specialized to a linear analysis scheme and it is used to derive various high-order approximation equations. This framework includes the Kalman filter and incremental three-and four-dimensional variational data assimilation schemes implementing a single outer loop iteration. Distinction is made between Taylor series methods and numerical quadrature methods. The novel quadrature approximations require minimal additional software development and are suitable for testing and implementation at operational numerical weather prediction centers where a data assimilation system (DAS) and the associated adjoint DAS are in place. Their potential use as tools for observation impact estimates needs to be further investigated. Preliminary numerical experiments are provided using the fifth-generation NASA Goddard Earth Observing System (GEOS-5) atmospheric DAS.

* Additional affiliation: Science Applications International Corporation, Beltsville, Maryland.

Corresponding author address: Dr. Dacian N. Daescu, Department of Mathematics and Statistics, Portland State University, P.O. Box 751, Portland, OR 97207. Email: daescu@pdx.edu

Save