A Multicase Comparative Assessment of the Ensemble Kalman Filter for Assimilation of Radar Observations. Part I: Storm-Scale Analyses

Altuğ Aksoy National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Altuğ Aksoy in
Current site
Google Scholar
PubMed
Close
,
David C. Dowell National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by David C. Dowell in
Current site
Google Scholar
PubMed
Close
, and
Chris Snyder National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Chris Snyder in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The effectiveness of the ensemble Kalman filter (EnKF) for assimilating radar observations at convective scales is investigated for cases whose behaviors span supercellular, linear, and multicellular organization. The parallel EnKF algorithm of the Data Assimilation Research Testbed (DART) is used for data assimilation, while the Weather Research and Forecasting (WRF) Model is employed as a simplified cloud model at 2-km horizontal grid spacing. In each case, reflectivity and radial velocity measurements are utilized from a single Weather Surveillance Radar-1988 Doppler (WSR-88D) within the U.S. operational network. Observations are assimilated every 2 min for a duration of 60 min and correction of folded radial velocities occurs within the EnKF. Initial ensemble uncertainty includes random perturbations to the horizontal wind components of the initial environmental sounding. The EnKF performs effectively and with robust results across all the cases. Over the first 18–30 min of assimilation, the rms and domain-averaged prior fits to observations in each case improve significantly from their initial levels, reaching comparable values of 3–6 m s−1 and 7–10 dBZ. Representation of mesoscale uncertainty, albeit in the simplest form of initial sounding perturbations, is a critical part of the assimilation system, as it increases ensemble spread and improves filter performance. In addition, assimilation of “no precipitation” observations (i.e., reflectivity observations with values small enough to indicate the absence of precipitation) serves to suppress spurious convection in ensemble members. At the same time, it is clear that the assimilation is far from optimal, as the ensemble spread is consistently smaller than what would be expected from the innovation statistics and the assumed observation-error variance.

Corresponding author address: Dr. Altuğ Aksoy, CIMAS, Rosenstiel School, 4600 Rickenbacker Causeway, Miami, FL 33149. Email: aaksoy@rsmas.miami.edu

Abstract

The effectiveness of the ensemble Kalman filter (EnKF) for assimilating radar observations at convective scales is investigated for cases whose behaviors span supercellular, linear, and multicellular organization. The parallel EnKF algorithm of the Data Assimilation Research Testbed (DART) is used for data assimilation, while the Weather Research and Forecasting (WRF) Model is employed as a simplified cloud model at 2-km horizontal grid spacing. In each case, reflectivity and radial velocity measurements are utilized from a single Weather Surveillance Radar-1988 Doppler (WSR-88D) within the U.S. operational network. Observations are assimilated every 2 min for a duration of 60 min and correction of folded radial velocities occurs within the EnKF. Initial ensemble uncertainty includes random perturbations to the horizontal wind components of the initial environmental sounding. The EnKF performs effectively and with robust results across all the cases. Over the first 18–30 min of assimilation, the rms and domain-averaged prior fits to observations in each case improve significantly from their initial levels, reaching comparable values of 3–6 m s−1 and 7–10 dBZ. Representation of mesoscale uncertainty, albeit in the simplest form of initial sounding perturbations, is a critical part of the assimilation system, as it increases ensemble spread and improves filter performance. In addition, assimilation of “no precipitation” observations (i.e., reflectivity observations with values small enough to indicate the absence of precipitation) serves to suppress spurious convection in ensemble members. At the same time, it is clear that the assimilation is far from optimal, as the ensemble spread is consistently smaller than what would be expected from the innovation statistics and the assumed observation-error variance.

Corresponding author address: Dr. Altuğ Aksoy, CIMAS, Rosenstiel School, 4600 Rickenbacker Causeway, Miami, FL 33149. Email: aaksoy@rsmas.miami.edu

Save
  • Anderson, J. L., 2001: An ensemble adjustment Kalman filter for data assimilation. Mon. Wea. Rev., 129 , 28842903.

  • Anderson, J. L., 2007: An adaptive covariance inflation error correction algorithm for ensemble filters. Tellus, 59A , 210224.

  • Anderson, J. L., 2009: Spatially and temporally varying adaptive covariance inflation for ensemble filters. Tellus, 61A , 7283.

  • Anderson, J. L., and N. Collins, 2007: Scalable implementations of ensemble filter algorithms for data assimilation. J. Atmos. Oceanic Technol., 24 , 14521463.

    • Search Google Scholar
    • Export Citation
  • Battan, L. J., 1973: Radar Observation of the Atmosphere. University of Chicago Press, 324 pp.

  • Caya, A., J. Sun, and C. Snyder, 2005: A comparison between the 4DVAR and the ensemble Kalman filter techniques for radar data assimilation. Mon. Wea. Rev., 133 , 30813094.

    • Search Google Scholar
    • Export Citation
  • Conway, J. W., and D. S. Zrnic, 1993: A study of embryo production and hail growth using dual-Doppler and multiparameter radars. Mon. Wea. Rev., 121 , 25112528.

    • Search Google Scholar
    • Export Citation
  • Crook, N. A., 1996: Sensitivity of moist convection forced by boundary layer processes to low-level thermodynamic fields. Mon. Wea. Rev., 124 , 17671785.

    • Search Google Scholar
    • Export Citation
  • Doviak, R. J., and D. S. Zrnic, 2006: Doppler Radar and Weather Observations. Dover Publications, 562 pp.

  • Dowell, D. C., and L. J. Wicker, 2009: Additive noise for storm-scale ensemble data assimilation. J. Atmos. Oceanic Technol., 26 , 911927.

    • Search Google Scholar
    • Export Citation
  • Dowell, D. C., F. Zhang, L. J. Wicker, C. Snyder, and N. A. Crook, 2004a: Wind and temperature retrievals in the 17 May 1981 Arcadia, Oklahoma, supercell: Ensemble Kalman filter experiments. Mon. Wea. Rev., 132 , 19822005.

    • Search Google Scholar
    • Export Citation
  • Dowell, D. C., L. J. Wicker, and D. J. Stensrud, 2004b: High resolution analyses of the 8 May 2003 Oklahoma City storm. Part II: EnKF data assimilation and forecast experiments. Preprints, 22nd Conf. on Severe Local Storms, Hyannis, MA, Amer. Meteor. Soc., 12.5. [Available online at http://ams.confex.com/ams/pdfpapers/81393.pdf].

    • Search Google Scholar
    • Export Citation
  • Elmore, K. L., D. J. Stensrud, and K. C. Crawford, 2002: Ensemble cloud model applications to forecasting thunderstorms. J. Appl. Meteor., 41 , 363383.

    • Search Google Scholar
    • Export Citation
  • Evensen, G., 1994: Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res., 99 , (C5). 1014310162.

    • Search Google Scholar
    • Export Citation
  • Fovell, R. G., and Y. Ogura, 1988: Numerical simulation of a midlatitude squall line in two dimensions. J. Atmos. Sci., 45 , 38463879.

    • Search Google Scholar
    • Export Citation
  • Fujita, T., D. J. Stensrud, and D. C. Dowell, 2007: Surface data assimilation using an ensemble Kalman filter approach with initial condition and model physics uncertainty. Mon. Wea. Rev., 135 , 18461868.

    • Search Google Scholar
    • Export Citation
  • Gaspari, G., and S. E. Cohn, 1999: Construction of correlation functions in two and three dimensions. Quart. J. Roy. Meteor. Soc., 125 , 723757.

    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., J. S. Whitaker, and C. Snyder, 2001: Distance-dependent filtering of background error covariance estimates in an ensemble Kalman filter. Mon. Wea. Rev., 129 , 27762790.

    • Search Google Scholar
    • Export Citation
  • Hauser, D., and P. Amayenc, 1981: A new method for deducing hydrometeor size distributions and vertical air motions from Doppler radar measurements at vertical incidence. J. Appl. Meteor., 20 , 547555.

    • Search Google Scholar
    • Export Citation
  • Houtekamer, P. L., and H. L. Mitchell, 1998: Data assimilation using an ensemble Kalman filter technique. Mon. Wea. Rev., 126 , 796811.

    • Search Google Scholar
    • Export Citation
  • Keeler, R. J., and R. E. Passarelli, 1990: Signal processing for atmospheric radars. Radar in Meteorology: Battan Memorial and 40th Anniversary Radar Meteorology Conference. D. Atlas, Ed., Amer. Meteor. Soc., 199–229.

    • Search Google Scholar
    • Export Citation
  • Lilly, D. K., 1990: Numerical prediction of thunderstorms—Has its time come? Quart. J. Roy. Meteor. Soc., 116 , 779798.

  • Lin, Y-L., R. D. Farley, and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor., 22 , 10651092.

    • Search Google Scholar
    • Export Citation
  • Miller, L. J., C. G. Mohr, and A. J. Weinheimer, 1986: The simple rectification to Cartesian space of folded radial velocities from Doppler radar sampling. J. Atmos. Oceanic Technol., 3 , 162174.

    • Search Google Scholar
    • Export Citation
  • Mitchell, H. L., P. L. Houtekamer, and G. Pellerin, 2002: Ensemble size, balance, and model-error representation in an ensemble Kalman filter. Mon. Wea. Rev., 130 , 27912808.

    • Search Google Scholar
    • Export Citation
  • Romine, G. S., D. W. Burgess, and R. B. Wilhelmson, 2008: A dual-polarization-radar-based assessment of the 8 May 2003 Oklahoma City area tornadic supercell. Mon. Wea. Rev., 136 , 28492870.

    • Search Google Scholar
    • Export Citation
  • Rotunno, R., and J. Klemp, 1985: On the rotation and propagation of simulated supercell thunderstorms. J. Atmos. Sci., 42 , 271292.

  • Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, W. Wang, and J. G. Powers, 2005: A description of the Advanced Research WRF version 2. NCAR Tech. Note NCAR/TN-468+STR, 88 pp.

    • Search Google Scholar
    • Export Citation
  • Smith Jr., P. L., 1984: Equivalent radar reflectivity factors for snow and ice particles. J. Climate Appl. Meteor., 23 , 12581260.

  • Smith Jr., P. L., C. G. Myers, and H. D. Orville, 1975: Radar reflectivity factor calculations in numerical cloud models using bulk parameterization of precipitation. J. Appl. Meteor., 14 , 11561165.

    • Search Google Scholar
    • Export Citation
  • Snyder, C., and F. Zhang, 2003: Assimilation of simulated Doppler radar observations with an ensemble Kalman filter. Mon. Wea. Rev., 131 , 16631677.

    • Search Google Scholar
    • Export Citation
  • Sun, J., and N. A. Crook, 1997: Dynamical and microphysical retrieval from Doppler radar observations using a cloud model and its adjoint. Part I: Model development and simulated data experiments. J. Atmos. Sci., 54 , 16421661.

    • Search Google Scholar
    • Export Citation
  • Sun, J., and N. A. Crook, 1998: Dynamical and microphysical retrieval from Doppler radar observations using a cloud model and its adjoint. Part II: Retrieval experiments of an observed Florida convective storm. J. Atmos. Sci., 55 , 835852.

    • Search Google Scholar
    • Export Citation
  • Sun, J., and N. A. Crook, 2001: Real-time low-level wind and temperature analysis using single WSR-88D data. Wea. Forecasting, 16 , 117132.

    • Search Google Scholar
    • Export Citation
  • Tippett, M. K., J. L. Anderson, C. H. Bishop, T. M. Hamill, and J. S. Whitaker, 2003: Ensemble square root filters. Mon. Wea. Rev., 131 , 14851490.

    • Search Google Scholar
    • Export Citation
  • Tong, M., and M. Xue, 2005: Ensemble Kalman filter assimilation of Doppler radar data with a compressible nonhydrostatic model: OSS experiments. Mon. Wea. Rev., 133 , 17891807.

    • Search Google Scholar
    • Export Citation
  • Tong, M., and M. Xue, 2008: Simultaneous estimation of microphysical parameters and atmospheric state with simulated radar data and ensemble square root Kalman filter. Part II: Parameter estimation experiments. Mon. Wea. Rev., 136 , 16491668.

    • Search Google Scholar
    • Export Citation
  • van Leeuwen, P. J., 1999: Comment on “Data Assimilation Using an Ensemble Kalman Filter Technique.”. Mon. Wea. Rev., 127 , 13741377.

    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., and J. B. Klemp, 1982: The dependence of numerically simulated convective storms on vertical wind shear and buoyancy. Mon. Wea. Rev., 110 , 504520.

    • Search Google Scholar
    • Export Citation
  • Whitaker, J. S., and T. M. Hamill, 2002: Ensemble data assimilation without perturbed observations. Mon. Wea. Rev., 130 , 19131924.

  • Xu, Q., K. Nai, and L. Wei, 2007: An innovation method for estimating radar radial-velocity observation error and background wind error covariances. Quart. J. Roy. Meteor. Soc., 133 , 407415.

    • Search Google Scholar
    • Export Citation
  • Zhang, F., C. Snyder, and J. Sun, 2004: Impacts of initial estimate and observation availability on convective-scale data assimilation with an ensemble Kalman filter. Mon. Wea. Rev., 132 , 12381253.

    • Search Google Scholar
    • Export Citation