• Bell, M. M., and M. T. Montgomery, 2008: Observed structure, evolution, and potential intensity of category 5 Hurricane Isabel (2003) from 12 to 14 September. Mon. Wea. Rev., 136 , 20232046.

    • Search Google Scholar
    • Export Citation
  • Bister, M., and K. A. Emanuel, 1998: Dissipative heating and hurricane intensity. Meteor. Atmos. Phys., 65 , 233240.

  • Black, P. G., and Coauthors, 2007: Air–sea exchange in hurricanes: Synthesis of observations from the Coupled Boundary Layer Air–Sea Transfer Experiment. Bull. Amer. Meteor. Soc., 88 , 357374.

    • Search Google Scholar
    • Export Citation
  • Bolton, D., 1980: The computation of equivalent potential temperature. Mon. Wea. Rev., 108 , 10461053.

  • Braun, S. A., and W-K. Tao, 2000: Sensitivity of high-resolution simulations of Hurricane Bob (1991) to planetary boundary layer parameterizations. Mon. Wea. Rev., 128 , 39413961.

    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., 2008: On the computation of pseudoadiabatic entropy and equivalent potential temperature. Mon. Wea. Rev., 136 , 52395245.

    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., and J. M. Fritsch, 2002: A benchmark simulation for moist nonhydrostatic numerical models. Mon. Wea. Rev., 130 , 29172928.

    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., and R. Rotunno, 2009: The influence of near-surface, high-entropy air in hurricane eyes on maximum hurricane intensity. J. Atmos. Sci., 66 , 148158.

    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., J. C. Wyngaard, and J. M. Fritsch, 2003: Resolution requirements for the simulation of deep moist convection. Mon. Wea. Rev., 131 , 23942416.

    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., J. C. Knievel, and M. D. Parker, 2006: A multimodel assessment of RKW theory’s relevance to squall-line characteristics. Mon. Wea. Rev., 134 , 27722792.

    • Search Google Scholar
    • Export Citation
  • Davis, C., and Coauthors, 2008: Prediction of landfalling hurricanes with the advanced hurricane WRF model. Mon. Wea. Rev., 136 , 19902005.

    • Search Google Scholar
    • Export Citation
  • DeMaria, M., and J. Kaplan, 1994: Sea surface temperature and the maximum intensity of Atlantic tropical cyclones. J. Climate, 7 , 13241334.

    • Search Google Scholar
    • Export Citation
  • Drennan, W. M., J. A. Zhang, J. R. French, C. McCormick, and P. G. Black, 2007: Turbulent fluxes in the hurricane boundary layer. Part I: Latent heat flux. J. Atmos. Sci., 64 , 11031115.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1986: An air-sea interaction theory for tropical cyclones. Part II: Steady-state maintenance. J. Atmos. Sci., 43 , 585604.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1988: The maximum intensity of hurricanes. J. Atmos. Sci., 45 , 11431155.

  • Emanuel, K. A., 1989: The finite-amplitude nature of tropical cyclogenesis. J. Atmos. Sci., 46 , 34313456.

  • Emanuel, K. A., 1994: Atmospheric Convection. Oxford, 580 pp.

  • Emanuel, K. A., 1995: Sensitivity of tropical cyclones to surface exchange coefficients and a revised steady-state model incorporating eye dynamics. J. Atmos. Sci., 52 , 39693976.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1997: Some aspects of hurricane inner-core dynamics and energetics. J. Atmos. Sci., 54 , 10141026.

  • French, J. R., W. M. Drennan, J. A. Zhang, and P. G. Black, 2007: Turbulent fluxes in the hurricane boundary layer. Part I: Momentum flux. J. Atmos. Sci., 64 , 10891102.

    • Search Google Scholar
    • Export Citation
  • Hausman, S. A., K. V. Ooyama, and W. H. Schubert, 2006: Potential vorticity structure of simulated hurricanes. J. Atmos. Sci., 63 , 87108.

    • Search Google Scholar
    • Export Citation
  • Hill, K. A., and G. M. Lackmann, 2009: Analysis of idealized tropical cyclone simulations using the Weather Research and Forecasting Model: Sensitivity to turbulence parameterization and grid spacing. Mon. Wea. Rev., 137 , 745765.

    • Search Google Scholar
    • Export Citation
  • Holland, G. J., 1997: The maximum potential intensity of tropical cyclones. J. Atmos. Sci., 54 , 25192541.

  • Kepert, J. D., 2006a: Observed boundary layer wind structure and balance in the hurricane core. Part I: Hurricane Georges. J. Atmos. Sci., 63 , 21692193.

    • Search Google Scholar
    • Export Citation
  • Kepert, J. D., 2006b: Observed boundary layer wind structure and balance in the hurricane core. Part II: Hurricane Mitch. J. Atmos. Sci., 63 , 21942211.

    • Search Google Scholar
    • Export Citation
  • Klemp, J. B., and R. B. Wilhelmson, 1978: The simulation of three-dimensional convective storm dynamics. J. Atmos. Sci., 35 , 10701096.

    • Search Google Scholar
    • Export Citation
  • Lackmann, G. M., and R. M. Yablonksy, 2004: The importance of the precipitation mass sink in tropical cyclones and other heavily precipitating systems. J. Atmos. Sci., 61 , 16741692.

    • Search Google Scholar
    • Export Citation
  • LeeJoice, R. N., 2000: Hurricane inner-core structure as revealed by GPS dropwindsondes. M.S. thesis, Department of Atmospheric Science, Colorado State University, 56 pp.

  • Lin, Y-L., R. D. Farley, and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor., 22 , 10651092.

    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., M. M. Bell, S. D. Aberson, and M. L. Black, 2006: Hurricane Isabel (2003): New insights into the physics of intense storms. Part I: Mean vortex structure and maximum intensity estimates. Bull. Amer. Meteor. Soc., 87 , 13351347.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., G. Thompson, and V. Tatarskii, 2009: Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: Comparison of one- and two-moment schemes. Mon. Wea. Rev., 137 , 9911007.

    • Search Google Scholar
    • Export Citation
  • Ooyama, K. V., 2001: A dynamic and thermodynamic foundation for modeling the moist atmosphere with parameterized microphysics. J. Atmos. Sci., 58 , 20732102.

    • Search Google Scholar
    • Export Citation
  • Persing, J., and M. T. Montgomery, 2003: Hurricane superintensity. J. Atmos. Sci., 60 , 23492371.

  • Persing, J., and M. T. Montgomery, 2005: Is environmental CAPE inportant in the determination of maximum possible hurricane intensity? J. Atmos. Sci., 62 , 542550.

    • Search Google Scholar
    • Export Citation
  • Powell, M. D., P. J. Vickery, and T. A. Reinhold, 2003: Reduced drag coefficient for high wind speeds in tropical cyclones. Nature, 422 , 279283.

    • Search Google Scholar
    • Export Citation
  • Qiu, C-J., J-W. Bao, and Q. Xu, 1993: Is the mass sink due to precipitation negligible? Mon. Wea. Rev., 121 , 853857.

  • Rosenthal, S. L., 1971: The response of a tropical cyclone model to variations in boundary layer parameters, initial conditions, lateral boundary conditions, and domain size. Mon. Wea. Rev., 99 , 767777.

    • Search Google Scholar
    • Export Citation
  • Rotunno, R., and K. A. Emanuel, 1987: An air-sea interaction theory for tropical cyclones. Part II: Evolutionary study using a nonhydrostatic axisymmetric numerical model. J. Atmos. Sci., 44 , 542561.

    • Search Google Scholar
    • Export Citation
  • Satoh, M., 2003: Conservative scheme for a compressible nonhydrostatic model with moist processes. Mon. Wea. Rev., 131 , 10331050.

  • Skamarock, W. C., and J. B. Klemp, 1992: The stability of time-split numerical methods for the hydrostatic and the nonhydrostatic elastic equations. Mon. Wea. Rev., 120 , 21092127.

    • Search Google Scholar
    • Export Citation
  • Walko, R. L., W. R. Cotton, G. Feingold, and B. Stevens, 2000: Efficient computation of vapor and heat diffusion between hydrometeors in a numerical model. Atmos. Res., 53 , 171183.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., 2002a: An explicit simulation of tropical cyclones with a triply nested movable mesh primitive equation model: TCM3. Part II: Model refinements and sensitivity to cloud microphysics parameterization. Mon. Wea. Rev., 130 , 30223036.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., 2002b: Vortex Rossby waves in a numerically simulated tropical cyclone. Part II: The role in tropical cyclone structure and intensity changes. J. Atmos. Sci., 59 , 12391262.

    • Search Google Scholar
    • Export Citation
  • Whitney, L. D., and J. S. Hobgood, 1997: The relationship between sea surface temperatures and maximum intensities of tropical cyclones in the Eastern North Pacific. J. Climate, 10 , 29212930.

    • Search Google Scholar
    • Export Citation
  • Wicker, L. J., and W. C. Skamarock, 2002: Time splitting methods for elastic models using forward time schemes. Mon. Wea. Rev., 130 , 20882097.

    • Search Google Scholar
    • Export Citation
  • Wu, L., and S. A. Braun, 2004: Effects of environmentally induced asymmetries on hurricane intensity: A numerical study. J. Atmos. Sci., 61 , 30653081.

    • Search Google Scholar
    • Export Citation
  • Yang, B., Y. Wang, and B. Wang, 2007: The effect of internally generated inner-core asymmetries on tropical cyclone potential intensity. J. Atmos. Sci., 64 , 11651188.

    • Search Google Scholar
    • Export Citation
  • Yau, M. K., Y. Liu, D-L. Zhang, and Y. Chen, 2004: A multiscale numerical study of Hurricane Andrew (1992). Part VI: Small-scale inner-core structures and wind streaks. Mon. Wea. Rev., 132 , 14101433.

    • Search Google Scholar
    • Export Citation
  • Zeng, Z., Y. Wang, and C-C. Wu, 2007: Environmental dynamical control of tropical cyclone intensity—An observational study. Mon. Wea. Rev., 135 , 3859.

    • Search Google Scholar
    • Export Citation
  • Zhang, D-L., and E. Altshuler, 1999: The effects of dissipative heating on hurricane intensity. Mon. Wea. Rev., 127 , 30323038.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 25 25 25
PDF Downloads 22 22 22

The Maximum Intensity of Tropical Cyclones in Axisymmetric Numerical Model Simulations

View More View Less
  • 1 National Center for Atmospheric Research,* Boulder, Colorado
Restricted access

Abstract

An axisymmetric numerical model is used to evaluate the maximum possible intensity of tropical cyclones. As compared with traditionally formulated nonhydrostatic models, this new model has improved mass and energy conservation in saturated conditions. In comparison with the axisymmetric model developed by Rotunno and Emanuel, the new model produces weaker cyclones (by ∼10%, in terms of maximum azimuthal velocity); the difference is attributable to several approximations in the Rotunno–Emanuel model. Then, using a single specification for initial conditions (with a sea surface temperature of 26°C), the authors conduct model sensitivity tests to determine the sensitivity of maximum azimuthal velocity (υmax) to uncertain aspects of the modeling system. For fixed mixing lengths in the turbulence parameterization, a converged value of υmax is achieved for radial grid spacing of order 1 km and vertical grid spacing of order 250 m. The fall velocity of condensate (Vt) changes υmax by up to 60%, and the largest υmax occurs for pseudoadiabatic thermodynamics (i.e., for Vt > 10 m s−1). The sensitivity of υmax to the ratio of surface exchange coefficients for entropy and momentum (CE/CD) matches the theoretical result, υmax ∼ (CE/CD)1/2, for nearly inviscid flow, but simulations with increasing turbulence intensity show less dependence on CE/CD; this result suggests that the effect of CE/CD is less important than has been argued previously. The authors find that υmax is most sensitive to the intensity of turbulence in the radial direction. However, some settings, such as inviscid flow, yield clearly unnatural structures; for example, υmax exceeds 110 m s−1, despite a maximum observed intensity of ∼70 m s−1 for this environment. The authors show that turbulence in the radial direction limits maximum axisymmetric intensity by weakening the radial gradients of angular momentum (which prevents environmental air from being drawn to small radius) and of entropy (which is consistent with weaker intensity by consideration of thermal wind balance). It is also argued that future studies should consider parameterized turbulence as an important factor in simulated tropical cyclone intensity.

Corresponding author address: George H. Bryan, National Center for Atmospheric Research, 3450 Mitchell Lane, Boulder, CO 80301. Email: gbryan@ucar.edu

Abstract

An axisymmetric numerical model is used to evaluate the maximum possible intensity of tropical cyclones. As compared with traditionally formulated nonhydrostatic models, this new model has improved mass and energy conservation in saturated conditions. In comparison with the axisymmetric model developed by Rotunno and Emanuel, the new model produces weaker cyclones (by ∼10%, in terms of maximum azimuthal velocity); the difference is attributable to several approximations in the Rotunno–Emanuel model. Then, using a single specification for initial conditions (with a sea surface temperature of 26°C), the authors conduct model sensitivity tests to determine the sensitivity of maximum azimuthal velocity (υmax) to uncertain aspects of the modeling system. For fixed mixing lengths in the turbulence parameterization, a converged value of υmax is achieved for radial grid spacing of order 1 km and vertical grid spacing of order 250 m. The fall velocity of condensate (Vt) changes υmax by up to 60%, and the largest υmax occurs for pseudoadiabatic thermodynamics (i.e., for Vt > 10 m s−1). The sensitivity of υmax to the ratio of surface exchange coefficients for entropy and momentum (CE/CD) matches the theoretical result, υmax ∼ (CE/CD)1/2, for nearly inviscid flow, but simulations with increasing turbulence intensity show less dependence on CE/CD; this result suggests that the effect of CE/CD is less important than has been argued previously. The authors find that υmax is most sensitive to the intensity of turbulence in the radial direction. However, some settings, such as inviscid flow, yield clearly unnatural structures; for example, υmax exceeds 110 m s−1, despite a maximum observed intensity of ∼70 m s−1 for this environment. The authors show that turbulence in the radial direction limits maximum axisymmetric intensity by weakening the radial gradients of angular momentum (which prevents environmental air from being drawn to small radius) and of entropy (which is consistent with weaker intensity by consideration of thermal wind balance). It is also argued that future studies should consider parameterized turbulence as an important factor in simulated tropical cyclone intensity.

Corresponding author address: George H. Bryan, National Center for Atmospheric Research, 3450 Mitchell Lane, Boulder, CO 80301. Email: gbryan@ucar.edu

Save