• Anderson, R. K., J. P. Ashman, F. Bittner, G. R. Farr, E. W. Ferguson, V. J. Oliver, and A. H. Smith, 1969: Application of meteorological satellite data in analysis and forecasting. ESSA Tech. Rep. NESC 51, Washington, DC, 330 pp.

    • Search Google Scholar
    • Export Citation
  • Barnes, S. L., F. Caracena, and A. Marroquin, 1996: Extracting synoptic-scale diagnostic information from mesoscale models: The Eta model, gravity waves, and quasigeostrophic diagnostics. Bull. Amer. Meteor. Soc., 77 , 519528.

    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., 1986: Fronts and jet streaks: A theoretical perspective. Mesoscale Meteorology and Forecasting, P. S. Ray, Ed., Amer. Meteor. Soc., 173–215.

    • Search Google Scholar
    • Export Citation
  • Blumen, W., 1992: Propagation of fronts and frontogenesis versus frontolysis over orography. Meteor. Atmos. Phys., 48 , 3750.

  • Bryan, G. H., and M. J. Fritsch, 2000a: Diabatically driven discrete propagation of surface fronts: A numerical analysis. J. Atmos. Sci., 57 , 20612079.

    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., and M. J. Fritsch, 2000b: Discrete propagation of surface fronts in a convective environment: Observations and theory. J. Atmos. Sci., 57 , 20412060.

    • Search Google Scholar
    • Export Citation
  • Charney, J. J., and M. J. Fritsch, 1999: Discrete frontal propagation in a nonconvective environment. Mon. Wea. Rev., 127 , 20832101.

  • Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface-hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129 , 569585.

    • Search Google Scholar
    • Export Citation
  • Cheng, W. Y. Y., and W. J. Steenburgh, 2005: Evaluation of surface sensible weather forecasts by the WRF and the Eta models over the western United States. Wea. Forecasting, 20 , 812821.

    • Search Google Scholar
    • Export Citation
  • Dickinson, M. J., and D. J. Knight, 1999: Frontal interaction with mesoscale topography. J. Atmos. Sci., 56 , 35443559.

  • Dudhia, J., 1989: Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46 , 30773107.

    • Search Google Scholar
    • Export Citation
  • Eady, E. T., 1949: Long waves and cyclone-waves. Tellus, 1 , 3352.

  • Egger, J., and K. P. Hoinka, 1992: Fronts and orography. Meteor. Atmos. Phys., 48 , 336.

  • Galloway, J. L., 1958: The three-front model: Its philosophy, nature, construction and use. Weather, 13 , 293301.

  • Gallus Jr., W. A., and M. Segal, 1999: Diabatic effects on late winter cold front evolution: Conceptual and numerical model evaluations. Mon. Wea. Rev., 127 , 15181537.

    • Search Google Scholar
    • Export Citation
  • Grim, J. A., R. M. Rauber, M. K. Ramamurthy, B. F. Jewett, and M. Han, 2007: High-resolution observations of the trowel-warm-frontal region of two continental winter cyclones. Mon. Wea. Rev., 135 , 16291646.

    • Search Google Scholar
    • Export Citation
  • Hanstrum, B. N., K. J. Wilson, and S. L. Barrell, 1990a: Prefrontal troughs over southern Australia. Part I: A climatology. Wea. Forecasting, 5 , 2231.

    • Search Google Scholar
    • Export Citation
  • Hanstrum, B. N., K. J. Wilson, and S. L. Barrell, 1990b: Prefrontal troughs over southern Australia. Part II: A case study of frontogenesis. Wea. Forecasting, 5 , 3246.

    • Search Google Scholar
    • Export Citation
  • Hoinka, K. P., and H. Volkert, 1992: Fronts and the Alps: Findings from the Front Experiment. Meteor. Atmos. Phys., 48 , 5175.

  • Horel, J. D., and C. V. Gibson, 1994: Analysis and simulation of a winter storm over Utah. Wea. Forecasting, 9 , 479494.

  • Horel, J. D., and Coauthors, 2002: MesoWest: Cooperative mesonets in the western United States. Bull. Amer. Meteor. Soc., 83 , 211226.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and F. P. Bretherton, 1972: Atmospheric frontogenesis models: Mathematical formulation and solution. J. Atmos. Sci., 29 , 1137.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., E. C. Neto, and H-R. Cho, 1984: The formation of multiple fronts. Quart. J. Roy. Meteor. Soc., 110 , 881896.

  • Janjić, Z. I., 2002: Nonsingular implementation of the Mellor–Yamada level 2.5 scheme in the NCEP Meso model. NCEP Office Note 437, 61 pp.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and J. M. Fritsch, 1990: A one-dimensional entraining/detraining plume model and its application in convective parameterization. J. Atmos. Sci., 47 , 27842802.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and J. M. Fritsch, 1993: Convective parameterization for mesoscale models: The Kain-Fritsch scheme. The Representation of Cumulus Convection in Numerical Models, K. A. Emanuel and D. J. Raymond, Eds., Amer. Meteor. Soc., 165–170.

    • Search Google Scholar
    • Export Citation
  • Keuler, K., J. Kerkmann, H. Kraus, and E. Schaller, 1992: Orographical modification and large scale forcing of a cold front. Meteor. Atmos. Phys., 48 , 105130.

    • Search Google Scholar
    • Export Citation
  • Keyser, D., 1986: Atmospheric fronts: An observational perspective. Mesoscale Meteorology and Forecasting, P. S. Ray, Ed., Amer. Meteor. Soc., 216–258.

    • Search Google Scholar
    • Export Citation
  • Koch, S. E., J. T. McQueen, and V. M. Karyampudi, 1995: A numerical study of the effects of differential cloud cover on cold frontal structure and dynamics. J. Atmos. Sci., 52 , 937964.

    • Search Google Scholar
    • Export Citation
  • Koppel, L. L., L. F. Bosart, and D. Keyser, 2000: A 25-yr climatology of large-amplitude hourly surface pressure changes over the conterminous United States. Mon. Wea. Rev., 128 , 5168.

    • Search Google Scholar
    • Export Citation
  • Kurz, M., 1990: The influence of the Alps on the structure and behaviour of cold fronts over southern Germany. Meteor. Atmos. Phys., 43 , 6168.

    • Search Google Scholar
    • Export Citation
  • Locatelli, J. D., P. V. Hobbs, and J. A. Werth, 1982: Mesoscale structures of vorticies in polar air streams. Mon. Wea. Rev., 110 , 14171433.

    • Search Google Scholar
    • Export Citation
  • Martin, J. E., 1998: The structure and evolution of a continental winter cyclone. Part I: Frontal structure and the occlusion process. Mon. Wea. Rev., 126 , 303328.

    • Search Google Scholar
    • Export Citation
  • Martin, J. E., 2006: Mid-Latitude Atmospheric Dynamics: A First Course. John Wiley & Sons, Ltd., 324 pp.

  • Mattocks, C., and R. Bleck, 1986: Jet streak dynamics and geostrophic adjustment processes during the initial stages of lee cyclogenesis. Mon. Wea. Rev., 114 , 20332056.

    • Search Google Scholar
    • Export Citation
  • Mellor, G. L., and T. Yamada, 1982: Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys. Space Phys., 20 , 851875.

    • Search Google Scholar
    • Export Citation
  • Miller, J. E., 1948: On the concept of frontogenesis. J. Meteor., 5 , 169171.

  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated-k model for the long-wave. J. Geophys. Res., 102 , (D14). 1666316682.

    • Search Google Scholar
    • Export Citation
  • Palmén, E., and C. W. Newton, 1969: Atmospheric Circulation Systems: Their Structure and Physical Interpretation. Academic Press, 620 pp.

    • Search Google Scholar
    • Export Citation
  • Penner, C. M., 1955: A three-front model for synoptic analyses. Quart. J. Roy. Meteor. Soc., 81 , 8991.

  • Petterssen, S., 1936: Contribution to the theory of frontogenesis. Geofys. Publ., 11 , 127.

  • Petterssen, S., 1956: Motions and Motion Systems. Vol. 2, Weather Analysis and Forecasting, McGraw-Hill, 428 pp.

  • Physick, W. L., 1988: Mesoscale modeling of a cold front and its interaction with a diurnally heated land mass. J. Atmos. Sci., 45 , 31693187.

    • Search Google Scholar
    • Export Citation
  • Reed, R. J., 1979: Cyclogenesis in polar air streams. Mon. Wea. Rev., 107 , 3852.

  • Schultz, D. M., 2005: A review of cold fronts with prefrontal troughs and wind shifts. Mon. Wea. Rev., 133 , 24492472.

  • Schultz, D. M., and C. F. Mass, 1993: The occlusion process in a midlatitude cyclone over land. Mon. Wea. Rev., 121 , 918940.

  • Schultz, D. M., and R. J. Trapp, 2003: Nonclassical cold-frontal structure caused by dry subcloud air in northern Utah during the Intermountain Precipitation Experiment (IPEX). Mon. Wea. Rev., 131 , 22222246.

    • Search Google Scholar
    • Export Citation
  • Schumacher, P. N., D. J. Knight, and L. F. Bosart, 1996: Frontal interaction with the Appalachian Mountains. Part I: A climatology. Mon. Wea. Rev., 124 , 24532468.

    • Search Google Scholar
    • Export Citation
  • Seaman, N. L., 1987: Program TRAJEC: Documentation and users guide. PSU-NWPLIB-0010-87, 95 pp.

  • Segal, M., E. A. Aligo, and W. A. Gallus Jr., 2004: A conceptual and scaling evaluation of the surface wetness effect on daytime moisture convergence along a surface cold front with differential cloud cover. J. Hydrometeor., 5 , 363369.

    • Search Google Scholar
    • Export Citation
  • Shafer, J. C., and W. J. Steenburgh, 2008: Climatology of strong Intermountain cold fronts. Mon. Wea. Rev., 136 , 784807.

  • Shafer, J. C., W. J. Steenburgh, J. A. W. Cox, and J. P. Monteverdi, 2006: Terrain influences on synoptic storm structure and mesoscale precipitation distribution during IPEX IOP3. Mon. Wea. Rev., 134 , 478497.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, W. Wang, and J. G. Powers, 2005: A description of the Advanced Research WRF version 2. NCAR Tech. Note 5, 22 pp.

    • Search Google Scholar
    • Export Citation
  • Splitt, M. E., and J. D. Horel, 1998: Use of multivariate linear regression for meteorological data analysis and quality assessment in complex terrain. Preprints, 10th Symp. on Meteorological Observations and Instrumentation, Phoenix, AZ, Amer. Meteor. Soc., 359–362.

    • Search Google Scholar
    • Export Citation
  • Steenburgh, W. J., and C. F. Mass, 1994: The structure and evolution of a simulated Rocky Mountain lee trough. Mon. Wea. Rev., 122 , 27402761.

    • Search Google Scholar
    • Export Citation
  • Steenburgh, W. J., and T. R. Blazek, 2001: Topographic distortion of a cold front over the Snake River Plain and the central Idaho mountains. Wea. Forecasting, 16 , 301314.

    • Search Google Scholar
    • Export Citation
  • Thompson, G., R. M. Rasmussen, and K. Manning, 2004: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part I: Description and sensitivity analysis. Mon. Wea. Rev., 132 , 519542.

    • Search Google Scholar
    • Export Citation
  • Thompson, G., P. R. Field, W. D. Hall, and R. M. Rasmussen, 2006: A new bulk microphysical parameterization for WRF (& MM5). Preprints, Seventh Weather Research and Forecasting User’s Workshop, Boulder, CO, NCAR, 5.3.

    • Search Google Scholar
    • Export Citation
  • Westrick, K. J., C. F. Mass, and B. A. Colle, 1999: The limitations of the WSR-88D radar network for quantitative precipitation measurement over the coastal western United States. Bull. Amer. Meteor. Soc., 80 , 22892298.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 5 5 5
PDF Downloads 2 2 2

Discrete Frontal Propagation over the Sierra–Cascade Mountains and Intermountain West

View More View Less
  • 1 Department of Atmospheric Sciences, University of Utah, Salt Lake City, Utah
  • | 2 Department of Earth and Atmospheric Sciences, University at Albany, State University of New York, Albany, New York
Restricted access

Abstract

On 25 March 2006, a complex frontal system moved across the Sierra–Cascade Mountains and intensified rapidly over the Intermountain West where it produced one of the strongest cold-frontal passages observed in Salt Lake City, Utah, during the past 25 yr. Observational analyses and numerical simulations by the Weather Research and Forecast (WRF) Model illustrate that the frontal system propagated discretely across the Sierra–Cascade Mountains and western Nevada. This discrete propagation occurs in a synoptic environment that features a mobile upper-level cyclonic potential vorticity (PV) anomaly that is coupled initially with a landfalling Pacific cyclone and attendant occluded front. The eastward migration of the upper-level cyclonic PV anomaly ultimately encourages the development of a new surface-based cold front ahead of the landfalling occlusion as troughing, confluence, and convergence downstream of the Sierra Nevada intensify preexisting baroclinity over Nevada. Trajectories show that the new cold front represents a boundary between potentially warm air originating over the desert Southwest, some of which has been deflected around the south end of the high sierra, and potentially cool air that has traversed the sierra near and north of Lake Tahoe, some of which has been deflected around the north end of the high sierra. Although diabatic processes contribute to the frontal sharpening, they are not needed for the discrete propagation or rapid cold-frontal development. Forecasters should be vigilant for discrete frontal propagation in similar synoptic situations and recognize that moist convection or differential surface heating can contribute to but are not necessary for rapid Intermountain West frontogenesis.

Corresponding author address: Dr. W. James Steenburgh, Department of Atmospheric Sciences, University of Utah, 135 South 1460 East Room 819, Salt Lake City, UT 84112. Email: jim.steenburgh@utah.edu

Abstract

On 25 March 2006, a complex frontal system moved across the Sierra–Cascade Mountains and intensified rapidly over the Intermountain West where it produced one of the strongest cold-frontal passages observed in Salt Lake City, Utah, during the past 25 yr. Observational analyses and numerical simulations by the Weather Research and Forecast (WRF) Model illustrate that the frontal system propagated discretely across the Sierra–Cascade Mountains and western Nevada. This discrete propagation occurs in a synoptic environment that features a mobile upper-level cyclonic potential vorticity (PV) anomaly that is coupled initially with a landfalling Pacific cyclone and attendant occluded front. The eastward migration of the upper-level cyclonic PV anomaly ultimately encourages the development of a new surface-based cold front ahead of the landfalling occlusion as troughing, confluence, and convergence downstream of the Sierra Nevada intensify preexisting baroclinity over Nevada. Trajectories show that the new cold front represents a boundary between potentially warm air originating over the desert Southwest, some of which has been deflected around the south end of the high sierra, and potentially cool air that has traversed the sierra near and north of Lake Tahoe, some of which has been deflected around the north end of the high sierra. Although diabatic processes contribute to the frontal sharpening, they are not needed for the discrete propagation or rapid cold-frontal development. Forecasters should be vigilant for discrete frontal propagation in similar synoptic situations and recognize that moist convection or differential surface heating can contribute to but are not necessary for rapid Intermountain West frontogenesis.

Corresponding author address: Dr. W. James Steenburgh, Department of Atmospheric Sciences, University of Utah, 135 South 1460 East Room 819, Salt Lake City, UT 84112. Email: jim.steenburgh@utah.edu

Save