Explicit Two-Step Peer Methods for the Compressible Euler Equations

Stefan Jebens Leibniz Institute for Tropospheric Research, Leipzig, Germany

Search for other papers by Stefan Jebens in
Current site
Google Scholar
PubMed
Close
,
Oswald Knoth Leibniz Institute for Tropospheric Research, Leipzig, Germany

Search for other papers by Oswald Knoth in
Current site
Google Scholar
PubMed
Close
, and
Rüdiger Weiner Institute of Mathematics, University of Halle, Halle, Germany

Search for other papers by Rüdiger Weiner in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A new time-splitting method for the integration of the compressible Euler equations is presented. It is based on a two-step peer method, which is a general linear method with second-order accuracy in every stage. The scheme uses a computationally very efficient forward–backward scheme for the integration of the high-frequency acoustic modes. With this splitting approach it is possible to stably integrate the compressible Euler equations without any artificial damping. The peer method is tested with the dry Euler equations and a comparison with the common split-explicit second-order three-stage Runge–Kutta method by Wicker and Skamarock shows the potential of the class of peer methods with respect to computational efficiency, stability, and accuracy.

Corresponding author address: Stefan Jebens, Leibniz Institute for Tropospheric Research, Permoserstr. 15, D-04318 Leipzig, Germany. Email: jebens@tropos.de

Abstract

A new time-splitting method for the integration of the compressible Euler equations is presented. It is based on a two-step peer method, which is a general linear method with second-order accuracy in every stage. The scheme uses a computationally very efficient forward–backward scheme for the integration of the high-frequency acoustic modes. With this splitting approach it is possible to stably integrate the compressible Euler equations without any artificial damping. The peer method is tested with the dry Euler equations and a comparison with the common split-explicit second-order three-stage Runge–Kutta method by Wicker and Skamarock shows the potential of the class of peer methods with respect to computational efficiency, stability, and accuracy.

Corresponding author address: Stefan Jebens, Leibniz Institute for Tropospheric Research, Permoserstr. 15, D-04318 Leipzig, Germany. Email: jebens@tropos.de

Save
  • Biermann, K., 2005: Explizite Zweischrittmethoden mit Peer-Variablen. M.S. thesis, Institute of Mathematics, University of Halle, 55 pp. [Available from Martin-Luther-Universität Halle-Wittenberg, Naturwissenschaftliche Fakultät III, Institut für Mathematik, 06099 Halle, Germany.].

  • Bryan, G. H., and J. M. Fritsch, 2002: A benchmark simulation for moist nonhydrostatic numerical models. Mon. Wea. Rev., 130 , 29172928.

    • Search Google Scholar
    • Export Citation
  • Burrage, K., and J. C. Butcher, 1980: Non-linear stability of a general class of differential equation methods. BIT, 20 , 185203.

  • Fischer, G., 1965: Comments on “Some problems involved in the numerical solutions of tidal hydraulics equations.”. Mon. Wea. Rev., 93 , 110111.

    • Search Google Scholar
    • Export Citation
  • Gerisch, A., J. Lang, H. Podhaisky, and R. Weiner, 2008: High-order linearly implicit two-step peer-finite element methods for time-dependent PDEs. Appl. Numer. Math., 59 , 624638.

    • Search Google Scholar
    • Export Citation
  • Hairer, E., S. P. Nørsett, and G. Wanner, 1993: Solving Ordinary Differential Equations I. 2nd ed. Springer-Verlag, 528 pp.

  • Kar, S. K., 2006: A semi-implicit Runge–Kutta time-difference scheme for the two-dimensional shallow-water equations. Mon. Wea. Rev., 134 , 29162926.

    • Search Google Scholar
    • Export Citation
  • Klemp, J. B., and R. B. Wilhelmson, 1978: The simulation of three-dimensional convective storm dynamics. J. Atmos. Sci., 35 , 10701096.

    • Search Google Scholar
    • Export Citation
  • Knoth, O., and R. Wolke, 1998: Implicit-explicit Runge–Kutta methods for computing atmospheric reactive flows. Appl. Numer. Math., 28 , 327341.

    • Search Google Scholar
    • Export Citation
  • Podhaisky, H., R. Weiner, and B. A. Schmitt, 2005: Rosenbrock-type ‘Peer’ two-step methods. Appl. Numer. Math., 53 , 409420.

  • Purser, R. J., 2007: Accuracy considerations of time-splitting methods for models using two-time-level schemes. Mon. Wea. Rev., 135 , 11581164.

    • Search Google Scholar
    • Export Citation
  • Schmitt, B. A., R. Weiner, and S. Jebens, 2008: Parameter optimization for explicit parallel peer two-step methods. Appl. Numer. Math., 59 , 769782.

    • Search Google Scholar
    • Export Citation
  • Shchepetkin, A. F., and J. C. McWilliams, 2005: The regional oceanic modeling system (ROMS): A split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Modell., 9 , 347404.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and J. B. Klemp, 1992: The stability of time-split numerical methods for the hydrostatic and the nonhydrostatic elastic equations. Mon. Wea. Rev., 120 , 21092127.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and J. B. Klemp, 1994: Efficiency and accuracy of the Klemp–Wilhelmson time-splitting technique. Mon. Wea. Rev., 122 , 26232630.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., J. Dudhia, D. Gill, D. Barker, W. Wei, and J. Powers, 2005: A description of the advanced research WRF version 2. NCAR Tech. Note NCAR/TN-468+STR, National Center for Atmospheric Research, Boulder, CO, 88 pp.

    • Search Google Scholar
    • Export Citation
  • Weiner, R., B. A. Schmitt, and H. Podhaisky, 2004: Parallel ‘peer’ two-step W-methods and their application to MOL-systems. Appl. Numer. Math., 48 , 425439.

    • Search Google Scholar
    • Export Citation
  • Weiner, R., S. Jebens, B. A. Schmitt, and H. Podhaisky, 2006: Explicit parallel two-step peer methods. Reports of the Institute of Numerical Mathematics, Rep. 10, 18 pp. [Available online at Martin-Luther-Universität Halle-Wittenberg, Naturwissenschaftliche Fakultät III, Institut für Mathematik, 06099 Halle, Germany.].

    • Search Google Scholar
    • Export Citation
  • Weiner, R., B. A. Schmitt, H. Podhaisky, and S. Jebens, 2008: Superconvergent explicit two-step peer methods. J. Comput. Appl. Math., 223 , 753764. doi:10.1016/j.cam.2008.02.014.

    • Search Google Scholar
    • Export Citation
  • Wicker, L. J., and W. C. Skamarock, 1998: A time-splitting scheme for the elastic equations incorporating second-order Runge–Kutta time differencing. Mon. Wea. Rev., 126 , 19921999.

    • Search Google Scholar
    • Export Citation
  • Wicker, L. J., and W. C. Skamarock, 2002: Time-splitting methods for elastic models using forward time schemes. Mon. Wea. Rev., 130 , 20882097.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1704 1303 26
PDF Downloads 196 40 1