Model Error Representation in an Operational Ensemble Kalman Filter

P. L. Houtekamer Meteorological Research Division, Dorval, Québec, Canada

Search for other papers by P. L. Houtekamer in
Current site
Google Scholar
PubMed
Close
,
Herschel L. Mitchell Meteorological Research Division, Dorval, Québec, Canada

Search for other papers by Herschel L. Mitchell in
Current site
Google Scholar
PubMed
Close
, and
Xingxiu Deng Canadian Meteorological Centre, Dorval, Québec, Canada

Search for other papers by Xingxiu Deng in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Since 12 January 2005, an ensemble Kalman filter (EnKF) has been used operationally at the Meteorological Service of Canada to provide the initial conditions for the medium-range forecasts of the ensemble prediction system. One issue in EnKF development is how to best account for model error.

It is shown that in a perfect-model environment, without any model error or model error simulation, the EnKF spread remains representative of the ensemble mean error with respect to a truth integration. Consequently, the EnKF can be used to quantify the impact of the various error sources in a data-assimilation cycle on the quality of the ensemble mean.

Using real rather than simulated observations, but still not simulating model error in any manner, the rms ensemble spread is found to be too small by approximately a factor of 2. It is then attempted to account for model error by using various combinations of the following four different approaches: (i) additive isotropic model error perturbations; (ii) different versions of the model for different ensemble members; (iii) stochastic perturbations to physical tendencies; and (iv) stochastic kinetic energy backscatter.

The addition of isotropic model error perturbations is found to have the biggest impact. The identification of model error sources could lead to a more realistic, likely anisotropic, parameterization. Using different versions of the model has a small but clearly positive impact and consequently both (i) and (ii) are used in the operational EnKF. The use of approaches (iii) and (iv) did not lead to further improvements.

Corresponding author address: P. L. Houtekamer, Meteorological Research Division, 2121 Route Trans-Canadienne, Dorval, QC H9P 1J3, Canada. Email: peter.houtekamer@ec.gc.ca

Abstract

Since 12 January 2005, an ensemble Kalman filter (EnKF) has been used operationally at the Meteorological Service of Canada to provide the initial conditions for the medium-range forecasts of the ensemble prediction system. One issue in EnKF development is how to best account for model error.

It is shown that in a perfect-model environment, without any model error or model error simulation, the EnKF spread remains representative of the ensemble mean error with respect to a truth integration. Consequently, the EnKF can be used to quantify the impact of the various error sources in a data-assimilation cycle on the quality of the ensemble mean.

Using real rather than simulated observations, but still not simulating model error in any manner, the rms ensemble spread is found to be too small by approximately a factor of 2. It is then attempted to account for model error by using various combinations of the following four different approaches: (i) additive isotropic model error perturbations; (ii) different versions of the model for different ensemble members; (iii) stochastic perturbations to physical tendencies; and (iv) stochastic kinetic energy backscatter.

The addition of isotropic model error perturbations is found to have the biggest impact. The identification of model error sources could lead to a more realistic, likely anisotropic, parameterization. Using different versions of the model has a small but clearly positive impact and consequently both (i) and (ii) are used in the operational EnKF. The use of approaches (iii) and (iv) did not lead to further improvements.

Corresponding author address: P. L. Houtekamer, Meteorological Research Division, 2121 Route Trans-Canadienne, Dorval, QC H9P 1J3, Canada. Email: peter.houtekamer@ec.gc.ca

Save
  • Anderson, J. L., 2001: An ensemble adjustment Kalman filter for data assimilation. Mon. Wea. Rev., 129 , 2884–2903.

  • Annan, J. D., J. C. Hargreaves, N. R. Edwards, and R. Marsh, 2005: Parameter estimation in an intermediate complexity earth system model using an ensemble Kalman filter. Ocean Modell., 8 , 135–154.

    • Search Google Scholar
    • Export Citation
  • Baek, S-J., B. Hunt, E. Kalnay, E. Ott, and I. Szunyogh, 2006: Local ensemble Kalman filtering in the presence of model bias. Tellus, 58A , 293–306.

    • Search Google Scholar
    • Export Citation
  • Bélair, S., and Coauthors, 2007: Operational implementation of a 33-km version of GEM for global medium-range weather prediction at CMC. Can. Meteor. Oceanogr. Soc. Bull., 35 , 77–84.

    • Search Google Scholar
    • Export Citation
  • Blackadar, A. K., 1962: The vertical distribution of wind and turbulent exchange in a neutral atmosphere. J. Geophys. Res., 67 , 3095–3102.

    • Search Google Scholar
    • Export Citation
  • Bougeault, P., and P. Lacarrère, 1989: Parameterization of orography-induced turbulence in a meso-beta-scale model. Mon. Wea. Rev., 117 , 1872–1890.

    • Search Google Scholar
    • Export Citation
  • Buizza, R., M. Miller, and T. N. Palmer, 1999: Stochastic representation of model uncertainties in the ECMWF ensemble prediction system. Quart. J. Roy. Meteor. Soc., 125 , 2887–2908.

    • Search Google Scholar
    • Export Citation
  • Buizza, R., P. L. Houtekamer, Z. Toth, G. Pellerin, M. Wei, and Y. Zhu, 2005: A comparison of the ECMWF, MSC, and NCEP global ensemble prediction systems. Mon. Wea. Rev., 133 , 1076–1097.

    • Search Google Scholar
    • Export Citation
  • Côté, J., S. Gravel, A. Méthot, A. Patoine, M. Roch, and A. Staniforth, 1998a: The operational CMC-MRB Global Environmental Multiscale (GEM) model. Part I: Design considerations and formulation. Mon. Wea. Rev., 126 , 1373–1395.

    • Search Google Scholar
    • Export Citation
  • Côté, J., J-G. Desmarais, S. Gravel, A. Méthot, A. Patoine, M. Roch, and A. Staniforth, 1998b: The operational CMC-MRB Global Environmental Multiscale (GEM) model. Part II: Results. Mon. Wea. Rev., 126 , 1397–1418.

    • Search Google Scholar
    • Export Citation
  • Daley, R., 1991: Atmospheric Data Analysis. Cambridge University Press, 457 pp.

  • Deardorff, J. W., 1978: Efficient prediction of ground surface temperature and moisture with inclusion of a layer of vegetation. J. Geophys. Res., 83 , 1889–1903.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., 1995: Online estimation of error covariance parameters for atmospheric data assimilation. Mon. Wea. Rev., 123 , 1128–1145.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and A. M. da Silva, 1998: Data assimilation in the presence of forecast bias. Quart. J. Roy. Meteor. Soc., 124 , 269–295.

    • Search Google Scholar
    • Export Citation
  • Evensen, G., 1994: Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res., 99 , 10143–10162.

    • Search Google Scholar
    • Export Citation
  • Fillion, L., H. L. Mitchell, H. Ritchie, and A. Staniforth, 1995: The impact of a digital filter finalization technique in a global data assimilation system. Tellus, 47A , 304–323.

    • Search Google Scholar
    • Export Citation
  • Fujita, T., D. J. Stensrud, and D. C. Dowell, 2007: Surface data assimilation using an ensemble Kalman filter approach with initial condition and model physics uncertainties. Mon. Wea. Rev., 135 , 1846–1868.

    • Search Google Scholar
    • Export Citation
  • Gagnon, N., and Coauthors, 2007: An update on the CMC ensemble medium-range forecast system. Proc. ECMWF 11th Workshop on Meteorological Operational Systems, Reading, United Kingdom, ECMWF, 55–59.

    • Search Google Scholar
    • Export Citation
  • Gaspari, G., and S. E. Cohn, 1999: Construction of correlation functions in two and three dimensions. Quart. J. Roy. Meteor. Soc., 125 , 723–757.

    • Search Google Scholar
    • Export Citation
  • Gauthier, P., M. Buehner, and L. Fillion, 1999: Background-error statistics modelling in a 3D variational data assimilation scheme: Estimation and impact on the analyses. Proc. ECMWF Workshop on Diagnosis of Data Assimilation Systems, Reading, United Kingdom, ECMWF, 131–145.

    • Search Google Scholar
    • Export Citation
  • Ghil, M., S. Cohn, J. Tavantzis, K. Bube, and E. Isaacson, 1981: Applications of estimation theory to numerical weather prediction. Dynamic Meteorology–Data Assimilation Methods, L. Bengtsson, M. Ghil, and E. Källén, Eds., Springer-Verlag, 139–224.

    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., and J. S. Whitaker, 2005: Accounting for the error due to unresolved scales in ensemble data assimilation: A comparison of different approaches. Mon. Wea. Rev., 133 , 3132–3147.

    • Search Google Scholar
    • Export Citation
  • Houtekamer, P. L., and H. L. Mitchell, 1998: Data assimilation using an ensemble Kalman filter technique. Mon. Wea. Rev., 126 , 796–811.

    • Search Google Scholar
    • Export Citation
  • Houtekamer, P. L., and H. L. Mitchell, 2001: A sequential ensemble Kalman filter for atmospheric data assimilation. Mon. Wea. Rev., 129 , 123–137.

    • Search Google Scholar
    • Export Citation
  • Houtekamer, P. L., and H. L. Mitchell, 2005: Ensemble Kalman filtering. Quart. J. Roy. Meteor. Soc., 131 , 3269–3289.

  • Houtekamer, P. L., H. L. Mitchell, G. Pellerin, M. Buehner, M. Charron, L. Spacek, and B. Hansen, 2005: Atmospheric data assimilation with an ensemble Kalman filter: Results with real observations. Mon. Wea. Rev., 133 , 604–620.

    • Search Google Scholar
    • Export Citation
  • Houtekamer, P., M. Charron, H. Mitchell, and G. Pellerin, 2007: Status of the global EPS at Environment Canada. Proc. ECMWF Workshop on Ensemble Prediction, Reading, United Kingdom, ECMWF, 57–68.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and J. M. Fritsch, 1993: Convective parameterization for mesoscale models: The Kain–Fritsch scheme. The Representation of Cumulus Convection in Numerical Models, Meteor. Monogr., No. 46, Amer. Meteor. Soc., 165–170.

    • Search Google Scholar
    • Export Citation
  • Khare, S. P., J. L. Anderson, T. J. Hoar, and D. Nychka, 2008: An investigation into the application of an ensemble Kalman smoother to high-dimensional geophysical systems. Tellus, 60A , 97–112.

    • Search Google Scholar
    • Export Citation
  • Kuo, H. L., 1974: Further studies of the parameterization of the influence of cumulus convection on large-scale flow. J. Atmos. Sci., 31 , 1232–1240.

    • Search Google Scholar
    • Export Citation
  • Leutbecher, M., R. Buizza, and L. Isaksen, 2007: Ensemble forecasting and flow-dependent estimates of initial uncertainty. Proc. ECMWF Workshop on Flow-Dependent Aspects of Data Assimilation, Reading, United Kingdom, ECMWF, 185–201.

    • Search Google Scholar
    • Export Citation
  • Li, X., M. Charron, L. Spacek, and G. Candille, 2008: A regional ensemble prediction system based on moist targeted singular vectors and stochastic parameter perturbations. Mon. Wea. Rev., 136 , 443–462.

    • Search Google Scholar
    • Export Citation
  • Meng, Z., and F. Zhang, 2007: Tests of an ensemble Kalman filter for mesoscale and regional-scale data assimilation. Part II: Imperfect model experiments. Mon. Wea. Rev., 135 , 1403–1423.

    • Search Google Scholar
    • Export Citation
  • Mitchell, H. L., and P. L. Houtekamer, 2000: An adaptive ensemble Kalman filter. Mon. Wea. Rev., 128 , 416–433.

  • Mitchell, H. L., and P. L. Houtekamer, 2009: Ensemble Kalman filter configurations and their performance with the logistic map. Mon. Wea. Rev., in press.

    • Search Google Scholar
    • Export Citation
  • Mitchell, H. L., P. L. Houtekamer, and G. Pellerin, 2002: Ensemble size, balance, and model-error representation in an ensemble Kalman filter. Mon. Wea. Rev., 130 , 2791–2808.

    • Search Google Scholar
    • Export Citation
  • Moorthi, S., and M. J. Suarez, 1992: Relaxed Arakawa–Schubert: A parameterization of moist convection for general circulation models. Mon. Wea. Rev., 120 , 978–1002.

    • Search Google Scholar
    • Export Citation
  • Noilhan, J., and S. Planton, 1989: A simple parameterization of land surface processes for meteorological models. Mon. Wea. Rev., 117 , 536–549.

    • Search Google Scholar
    • Export Citation
  • Reynolds, C. A., J. Teixeira, and J. G. McLay, 2008: Impact of stochastic convection on the ensemble transform. Mon. Wea. Rev., 136 , 4517–4526.

    • Search Google Scholar
    • Export Citation
  • Shutts, G., 2005: A kinetic energy backscatter algorithm for use in ensemble prediction systems. Quart. J. Roy. Meteor. Soc., 131 , 3079–3102.

    • Search Google Scholar
    • Export Citation
  • St-James, J. S., and S. Laroche, 2005: Assimilation of wind profiler data in the Canadian Meteorological Centre’s analysis system. J. Atmos. Oceanic Technol., 22 , 1181–1194.

    • Search Google Scholar
    • Export Citation
  • Stoffelen, A., G. J. Marseille, F. Bouttier, D. Vasiljevic, S. de Haan, and C. Cardinali, 2006: ADM-Aeolus Doppler wind lidar Observing System Simulation Experiment. Quart. J. Roy. Meteor. Soc., 132 , 1927–1947.

    • Search Google Scholar
    • Export Citation
  • Swanson, K., R. Vautard, and C. Pires, 1998: Four-dimensional variational assimilation and predictability in a quasi-geostrophic model. Tellus, 50A , 369–390.

    • Search Google Scholar
    • Export Citation
  • Wagneur, N., 1991: Une évaluation des schémas de type Kuo pour le paramétrage de la convection. M.S. thesis, Université du Québec, Montréal, Canada, 76 pp.

  • Whitaker, J. S., T. M. Hamill, X. Wei, Y. Song, and Z. Toth, 2008: Ensemble data assimilation with the NCEP global forecast system. Mon. Wea. Rev., 136 , 463–482.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 3763 2873 109
PDF Downloads 747 114 12