Cloud-Resolving Hurricane Initialization and Prediction through Assimilation of Doppler Radar Observations with an Ensemble Kalman Filter

Fuqing Zhang Department of Meteorology, The Pennsylvania State University, University Park, Pennsylvania

Search for other papers by Fuqing Zhang in
Current site
Google Scholar
PubMed
Close
,
Yonghui Weng Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China, and Department of Atmospheric Sciences, Texas A&M University, College Station, Texas, and The Graduate School, Chinese Academy of Sciences, Beijing, China

Search for other papers by Yonghui Weng in
Current site
Google Scholar
PubMed
Close
,
Jason A. Sippel Department of Atmospheric Sciences, Texas A&M University, College Station, Texas

Search for other papers by Jason A. Sippel in
Current site
Google Scholar
PubMed
Close
,
Zhiyong Meng Department of Atmospheric Sciences, School of Physics, Peking University, Beijing, China

Search for other papers by Zhiyong Meng in
Current site
Google Scholar
PubMed
Close
, and
Craig H. Bishop Marine Meteorology Division, Naval Research Laboratory, Monterey, California

Search for other papers by Craig H. Bishop in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study explores the assimilation of Doppler radar radial velocity observations for cloud-resolving hurricane analysis, initialization, and prediction with an ensemble Kalman filter (EnKF). The case studied is Hurricane Humberto (2007), the first landfalling hurricane in the United States since the end of the 2005 hurricane season and the most rapidly intensifying near-landfall storm in U.S. history. The storm caused extensive damage along the southeast Texas coast but was poorly predicted by operational models and forecasters. It is found that the EnKF analysis, after assimilating radial velocity observations from three Weather Surveillance Radars-1988 Doppler (WSR-88Ds) along the Gulf coast, closely represents the best-track position and intensity of Humberto. Deterministic forecasts initialized from the EnKF analysis, despite displaying considerable variability with different lead times, are also capable of predicting the rapid formation and intensification of the hurricane. These forecasts are also superior to simulations without radar data assimilation or with a three-dimensional variational scheme assimilating the same radar observations. Moreover, nearly all members from the ensemble forecasts initialized with EnKF analysis perturbations predict rapid formation and intensification of the storm. However, the large ensemble spread of peak intensity, which ranges from a tropical storm to a category 2 hurricane, echoes limited predictability in deterministic forecasts of the storm and the potential of using ensembles for probabilistic forecasts of hurricanes.

Corresponding author address: Dr. Fuqing Zhang, Dept. of Meteorology, The Pennsylvania State University, University Park, PA 16802. Email: fzhang@psu.edu

This article included in the Targeted Observations, Data Assimilation, and Tropical Cyclone Predictability special collection.

Abstract

This study explores the assimilation of Doppler radar radial velocity observations for cloud-resolving hurricane analysis, initialization, and prediction with an ensemble Kalman filter (EnKF). The case studied is Hurricane Humberto (2007), the first landfalling hurricane in the United States since the end of the 2005 hurricane season and the most rapidly intensifying near-landfall storm in U.S. history. The storm caused extensive damage along the southeast Texas coast but was poorly predicted by operational models and forecasters. It is found that the EnKF analysis, after assimilating radial velocity observations from three Weather Surveillance Radars-1988 Doppler (WSR-88Ds) along the Gulf coast, closely represents the best-track position and intensity of Humberto. Deterministic forecasts initialized from the EnKF analysis, despite displaying considerable variability with different lead times, are also capable of predicting the rapid formation and intensification of the hurricane. These forecasts are also superior to simulations without radar data assimilation or with a three-dimensional variational scheme assimilating the same radar observations. Moreover, nearly all members from the ensemble forecasts initialized with EnKF analysis perturbations predict rapid formation and intensification of the storm. However, the large ensemble spread of peak intensity, which ranges from a tropical storm to a category 2 hurricane, echoes limited predictability in deterministic forecasts of the storm and the potential of using ensembles for probabilistic forecasts of hurricanes.

Corresponding author address: Dr. Fuqing Zhang, Dept. of Meteorology, The Pennsylvania State University, University Park, PA 16802. Email: fzhang@psu.edu

This article included in the Targeted Observations, Data Assimilation, and Tropical Cyclone Predictability special collection.

Save
  • Alpert, J. C., and V. K. Kumar, 2007: Radial wind super-obs from the WSR-88D radars in the NCEP operational assimilation system. Mon. Wea. Rev., 135 , 10901108.

    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., 2001: An ensemble adjustment Kalman filter for data assimilation. Mon. Wea. Rev., 129 , 28842903.

  • Barker, D. M., 2005: Southern high-latitude ensemble data assimilation in the Antarctic mesoscale prediction system. Mon. Wea. Rev., 133 , 34313449.

    • Search Google Scholar
    • Export Citation
  • Barker, D. M., W. Huang, Y-R. Guo, A. J. Bourgeois, and Q. N. Xiao, 2004: A three-dimensional variational data assimilation system for MM5: Implementation and initial results. Mon. Wea. Rev., 132 , 897914.

    • Search Google Scholar
    • Export Citation
  • Barnes, S. L., 1964: A technique for maximizing details in numerical weather map analysis. J. Appl. Meteor., 3 , 396409.

  • Bei, N., and F. Zhang, 2007: Mesoscale predictability of the torrential rainfall along the mei-yu front of China. Quart. J. Roy. Meteor. Soc., 133 , 8399.

    • Search Google Scholar
    • Export Citation
  • Bishop, C. H., and D. Hodyss, 2007: Flow-adaptive moderation of spurious ensemble correlations and its use in ensemble-based data assimilation. Quart. J. Roy. Meteor. Soc., 133 , 20292044.

    • Search Google Scholar
    • Export Citation
  • Chen, S. S., J. F. Price, W. Zhao, M. A. Donelan, and E. J. Walsh, 2007: The CBLAST-Hurricane Program and the next-generation fully coupled atmosphere–wave–ocean models for hurricane research and prediction. Bull. Amer. Meteor. Soc., 88 , 311317.

    • Search Google Scholar
    • Export Citation
  • Chessa, P. A., G. Ficca, M. Marrocu, and R. Buizza, 2004: Application of a limited-area short-range ensemble forecast system to a case of heavy rainfall in the Mediterranean region. Wea. Forecasting, 19 , 566581.

    • Search Google Scholar
    • Export Citation
  • Davis, C. A., and Coauthors, 2008: Prediction of landfalling hurricanes with the advanced hurricane WRF model. Mon. Wea. Rev., 136 , 19902005.

    • Search Google Scholar
    • Export Citation
  • Dowell, D. C., F. Zhang, L. J. Wicker, C. Snyder, and N. A. Crook, 2004: Wind and thermodynamic retrievals in the 17 May 1981 Arcadia, Oklahoma, supercell: Ensemble Kalman filter experiments. Mon. Wea. Rev., 132 , 19822005.

    • Search Google Scholar
    • Export Citation
  • Elsberry, R. L., T. D. B. Lambert, and M. A. Boothe, 2007: Accuracy of Atlantic and eastern North Pacific tropical cyclone intensity forecast guidance. Wea. Forecasting, 22 , 747762.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K., 2005: Increasing destructiveness of tropical cyclones over the past 30 years. Nature, 436 , 686688.

  • Evensen, G., 1994: Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res., 99 , 1014310162.

    • Search Google Scholar
    • Export Citation
  • Evensen, G., 2003: The ensemble Kalman filter: Theoretical formulation and practical implementation. Ocean Dyn., 53 , 343367.

  • Franklin, J. L., 2004: National Hurricane Center verification report. Preprints, 57th Interdepartmental Hurricane Conf., Miami, FL, Office of the Federal Coordinator for Meteorological Services and Supporting Research. [Updates available online at www.nhc.noaa.gov/verification].

    • Search Google Scholar
    • Export Citation
  • Fujita, T., D. J. Stensrud, and D. C. Dowell, 2007: Surface data assimilation using an ensemble Kalman filter approach with initial condition and model physics uncertainties. Mon. Wea. Rev., 135 , 18461868.

    • Search Google Scholar
    • Export Citation
  • Gaspari, G., and S. E. Cohn, 1999: Construction of correlation functions in two and three dimensions. Quart. J. Roy. Meteor. Soc., 125 , 723757.

    • Search Google Scholar
    • Export Citation
  • Grell, G. A., and D. Devenyi, 2002: A generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geophys. Res. Lett., 29 , 1693. doi:10.1029/2002GL015311.

    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., 2006: Ensemble-based atmospheric data assimilation. Predictability of Weather and Climate, T. Palmer and R. Hagedorn, Eds., Cambridge University Press, 124–156.

    • Search Google Scholar
    • Export Citation
  • Hawblitzel, D., F. Zhang, Z. Meng, and C. A. Davis, 2007: Probabilistic evaluation of the dynamics and predictability of mesoscale convective vortex event of 10–13 June 2003. Mon. Wea. Rev., 135 , 15441563.

    • Search Google Scholar
    • Export Citation
  • Hong, S-Y., J. Dudhia, and S-H. Chen, 2004: A revised approach to ice-microphysical processes for the bulk parameterization of cloud and precipitation. Mon. Wea. Rev., 132 , 103120.

    • Search Google Scholar
    • Export Citation
  • Houtekamer, P. L., and H. L. Mitchell, 2001: A sequential ensemble Kalman filter for atmospheric data assimilation. Mon. Wea. Rev., 129 , 123137.

    • Search Google Scholar
    • Export Citation
  • Houtekamer, P. L., H. L. Mitchell, G. Pellerin, M. Buehner, M. Charron, L. Speak, and B. Hansen, 2005: Atmospheric data assimilation with an ensemble Kalman filter: Results with real observations. Mon. Wea. Rev., 133 , 604620.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., S. S. Chen, B. F. Smull, W-C. Lee, and M. M. Bell, 2007: Hurricane intensity and eyewall replacement. Science, 315 , 12351238.

    • Search Google Scholar
    • Export Citation
  • Krishnamurti, T. N., C. M. Kishtawal, T. LaRow, D. Bachiochi, Z. Zhang, C. E. Williford, S. Gadhil, and S. Surendran, 1999: Improved weather and seasonal climate forecasts from multimodel superensemble. Science, 285 , 15481550.

    • Search Google Scholar
    • Export Citation
  • Krishnamurti, T. N., and Coauthors, 2001: Real-time multianalysis–multimodel superensemble forecasts of precipitation using TRMM and SSM/I products. Mon. Wea. Rev., 129 , 28612883.

    • Search Google Scholar
    • Export Citation
  • Krishnamurti, T. N., and Coauthors, 2005: The hurricane intensity issue. Mon. Wea. Rev., 133 , 18861912.

  • Lindskog, M., H. Järvinen, and D. B. Michelson, 2000: Assimilation of radar radial winds in the HIRLAM 3D-Var. Phys. Chem. Earth, 25B , 12431249.

    • Search Google Scholar
    • Export Citation
  • Lindskog, M., K. Salonen, H. Jarvinen, and D. B. Michelson, 2004: Doppler radar wind data assimilation with HIRLAM 3DVAR. Mon. Wea. Rev., 132 , 10811092.

    • Search Google Scholar
    • Export Citation
  • Meng, Z., and F. Zhang, 2007: Test of an ensemble Kalman filter for mesoscale and regional-scale data assimilation. Part II: Imperfect-model experiments. Mon. Wea. Rev., 135 , 14031423.

    • Search Google Scholar
    • Export Citation
  • Meng, Z., and F. Zhang, 2008a: Test of an ensemble Kalman filter for mesoscale and regional-scale data assimilation. Part III: Comparison with 3DVAR in a real-data case study. Mon. Wea. Rev., 136 , 522540.

    • Search Google Scholar
    • Export Citation
  • Meng, Z., and F. Zhang, 2008b: Test of an ensemble Kalman filter for mesoscale and regional-scale data assimilation. Part IV: Performance over a warm-season month of June 2003. Mon. Wea. Rev., 136 , 36713682.

    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., M. E. Nicholls, T. A. Cram, and A. B. Saunders, 2006: A vortical hot tower route to tropical cyclogenesis. J. Atmos. Sci., 63 , 355386.

    • Search Google Scholar
    • Export Citation
  • Montmerle, T., and C. Faccani, 2009: Mesoscale assimilation of radial velocities from Doppler radars in a preoperational framework. Mon. Wea. Rev., 137 , 19391953.

    • Search Google Scholar
    • Export Citation
  • Noh, Y., W-G. Cheon, and S-Y. Hong, 2003: Improvement of the K-profile model for the planetary boundary layer based on large eddy simulation data. Bound.-Layer Meteor., 107 , 401427.

    • Search Google Scholar
    • Export Citation
  • Parrish, D. F., and J. C. Derber, 1992: The National Meteorological Center’s spectral statistical-interpolation analysis system. Mon. Wea. Rev., 120 , 17471763.

    • Search Google Scholar
    • Export Citation
  • Pielke, R. A., 1997: Reframing the U.S. hurricane problem. Soc. Nat. Resour., 10 , 485499.

  • Pu, Z. X., and S. A. Braun, 2001: Evaluation of bogus vortex techniques with four-dimensional variational data assimilation. Mon. Wea. Rev., 129 , 20232039.

    • Search Google Scholar
    • Export Citation
  • Sippel, J. A., and F. Zhang, 2008: Probabilistic evaluation of the dynamics and predictability of tropical cyclogenesis. J. Atmos. Sci., 65 , 34403459.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, W. Wang, and J. G. Powers, 2005: A description of the Advanced Research WRF version 2. NCAR Tech. Note NCAR/TN-468+STR, 88 pp.

    • Search Google Scholar
    • Export Citation
  • Snyder, C., and F. Zhang, 2003: Tests of an ensemble Kalman filter for convective-scale data assimilation. Mon. Wea. Rev., 131 , 16631677.

    • Search Google Scholar
    • Export Citation
  • Tan, Z., F. Zhang, R. Rotunno, and C. Snyder, 2004: Mesoscale predictability of moist baroclinic waves: Experiments with parameterized moist convection. J. Atmos. Sci., 61 , 17941804.

    • Search Google Scholar
    • Export Citation
  • Tong, M., and M. Xue, 2005: Ensemble Kalman filter assimilation of Doppler radar data with a compressible nonhydrostatic model: OSS experiments. Mon. Wea. Rev., 133 , 17891807.

    • Search Google Scholar
    • Export Citation
  • Torn, R. D., and G. J. Hakim, 2008: Performance characteristics of a pseudo-operational ensemble Kalman filter. Mon. Wea. Rev., 136 , 39473963.

    • Search Google Scholar
    • Export Citation
  • Torn, R. D., G. J. Hakim, and C. Snyder, 2006: Boundary conditions for a limited-area ensemble Kalman filter. Mon. Wea. Rev., 134 , 24902502.

    • Search Google Scholar
    • Export Citation
  • Webster, P. J., G. J. Holland, J. A. Curry, and H-R. Chang, 2005: Changes in tropical cyclone number, duration, and intensity in a warming environment. Science, 309 , 18441846.

    • Search Google Scholar
    • Export Citation
  • Whitaker, J. S., T. M. Hamill, X. Wei, Y. Song, and Z. Toth, 2008: Ensemble data assimilation with the NCEP Global Forecast System. Mon. Wea. Rev., 136 , 463482.

    • Search Google Scholar
    • Export Citation
  • Xiao, Q., Y. H. Kuo, J. Sun, W. C. Lee, D. M. Barker, and E. Lim, 2007: An approach of radar reflectivity data assimilation and its assessment with the inland QPF of Typhoon Rusa (2002) at Landfall. J. Appl. Meteor. Climatol., 46 , 1422.

    • Search Google Scholar
    • Export Citation
  • Xu, Q., and J. Gong, 2003: Background error covariance functions for Doppler radial-wind analysis. Quart. J. Roy. Meteor. Soc., 129 , 17031720.

    • Search Google Scholar
    • Export Citation
  • Zhang, F., 2005: Dynamics and structure of mesoscale error covariance of a winter cyclone estimated through short-range ensemble forecasts. Mon. Wea. Rev., 133 , 28762893.

    • Search Google Scholar
    • Export Citation
  • Zhang, F., and J. A. Sippel, 2009: Effects of moist convection on hurricane predictability. J. Atmos. Sci., 66 , 19441961.

  • Zhang, F., C. Snyder, and R. Rotunno, 2002: Mesoscale predictability of the “surprise” snowstorm of 24–25 January 2000. Mon. Wea. Rev., 130 , 16171632.

    • Search Google Scholar
    • Export Citation
  • Zhang, F., C. Snyder, and R. Rotunno, 2003: Effects of moist convection on mesoscale predictability. J. Atmos. Sci., 60 , 11731185.

  • Zhang, F., C. Snyder, and J. Sun, 2004: Tests of an ensemble Kalman filter for convective-scale data assimilation: Impact of initial estimate and observations. Mon. Wea. Rev., 132 , 12381253.

    • Search Google Scholar
    • Export Citation
  • Zhang, F., Z. Meng, and A. Aksoy, 2006a: Test of an ensemble Kalman filter for mesoscale and regional-scale data assimilation. Part I: Perfect-model experiments. Mon. Wea. Rev., 134 , 722736.

    • Search Google Scholar
    • Export Citation
  • Zhang, F., A. Odins, and J. W. Nielsen-Gammon, 2006b: Mesoscale predictability of an extreme warm-season rainfall event. Wea. Forecasting, 21 , 149166.

    • Search Google Scholar
    • Export Citation
  • Zhang, F., N. Bei, R. Rotunno, C. Snyder, and C. C. Epifanio, 2007: Mesoscale predictability of moist baroclinic waves: Cloud-resolving experiments and multistage error growth dynamics. J. Atmos. Sci., 64 , 35793594.

    • Search Google Scholar
    • Export Citation
  • Zou, X., and Q. Xiao, 2000: Studies on the initialization and simulation of a mature hurricane using a variational bogus data assimilation scheme. J. Atmos. Sci., 57 , 836860.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 25568 23470 306
PDF Downloads 1385 327 38