Four Years of Tropical ERA-40 Vorticity Maxima Tracks. Part II: Differences between Developing and Nondeveloping Disturbances

Brandon Kerns University of Utah, Salt Lake City, Utah

Search for other papers by Brandon Kerns in
Current site
Google Scholar
PubMed
Close
and
Edward Zipser University of Utah, Salt Lake City, Utah

Search for other papers by Edward Zipser in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Using a subset of the relative vorticity maxima (VM) tracks described in Part I, large-scale environmental fields, cold cloud area, and rainfall area are used to discriminate between developing and nondeveloping tropical disturbances in the eastern North Pacific (EPAC) and Atlantic Oceans. By using a minimum cold cloud coverage requirement, the nondeveloping VM are limited to disturbances with enhanced low-level relative vorticity and widespread deep convection. Linear discriminant analysis is used to determine the overall discrimination and the relative importance of each predictor for each basin separately. It is important to distinguish the two basins because, for many predictors, the differences between the basins are greater than the differences between developing and nondeveloping VM in each basin. Using the parametric forecast method, there is greater discrimination and prediction skill in the EPAC than in the Atlantic. There are also significant differences between the two basins in terms of the degree of discrimination provided by each of the predictors. Surprisingly, the mean vertical wind shear magnitude is greater for EPAC developing VM than for EPAC nondeveloping VM. Incorporating the satellite-derived predictors marginally improves the potential forecast skill in the EPAC but not in the Atlantic. The prediction skill (Heidke skill score) of tropical cyclogenesis in the Atlantic is similar to what has been obtained in previous studies using cloud cluster tracks. There is greater predictive skill in the EPAC.

Corresponding author address: Brandon Kerns, University of Utah, 135 S 1460 E, Rm. 819, Salt Lake City, UT 84112. Email: brandon.kerns@utah.edu

Abstract

Using a subset of the relative vorticity maxima (VM) tracks described in Part I, large-scale environmental fields, cold cloud area, and rainfall area are used to discriminate between developing and nondeveloping tropical disturbances in the eastern North Pacific (EPAC) and Atlantic Oceans. By using a minimum cold cloud coverage requirement, the nondeveloping VM are limited to disturbances with enhanced low-level relative vorticity and widespread deep convection. Linear discriminant analysis is used to determine the overall discrimination and the relative importance of each predictor for each basin separately. It is important to distinguish the two basins because, for many predictors, the differences between the basins are greater than the differences between developing and nondeveloping VM in each basin. Using the parametric forecast method, there is greater discrimination and prediction skill in the EPAC than in the Atlantic. There are also significant differences between the two basins in terms of the degree of discrimination provided by each of the predictors. Surprisingly, the mean vertical wind shear magnitude is greater for EPAC developing VM than for EPAC nondeveloping VM. Incorporating the satellite-derived predictors marginally improves the potential forecast skill in the EPAC but not in the Atlantic. The prediction skill (Heidke skill score) of tropical cyclogenesis in the Atlantic is similar to what has been obtained in previous studies using cloud cluster tracks. There is greater predictive skill in the EPAC.

Corresponding author address: Brandon Kerns, University of Utah, 135 S 1460 E, Rm. 819, Salt Lake City, UT 84112. Email: brandon.kerns@utah.edu

Save
  • Arkin, P. A., and B. N. Meisner, 1987: The relationship between large-scale convective rainfall and cold cloud over the Western Hemisphere during 1982–84. Mon. Wea. Rev., 115 , 5174.

    • Search Google Scholar
    • Export Citation
  • Avila, L. A., and R. J. Pasch, 1992: Atlantic tropical systems of 1991. Mon. Wea. Rev., 120 , 26882696.

  • Bister, M., and K. A. Emanuel, 1997: The genesis of Hurricane Guillermo: TEXMEX analyses and a modeling study. Mon. Wea. Rev., 125 , 26622682.

    • Search Google Scholar
    • Export Citation
  • Bracken, W. E., and L. F. Bosart, 2000: The role of synoptic-scale flow during tropical cyclogenesis over the North Atlantic Ocean. Mon. Wea. Rev., 128 , 353376.

    • Search Google Scholar
    • Export Citation
  • Briegel, L. M., and W. M. Frank, 1997: Large-scale influences on tropical cyclogenesis in the western North Pacific. Mon. Wea. Rev., 125 , 13971413.

    • Search Google Scholar
    • Export Citation
  • Chen, S. S., J. A. Knaff, and F. D. Marks, 2006: Effects of vertical wind shear and storm motion on tropical cyclone rainfall asymmetries deduced from TRMM. Mon. Wea. Rev., 134 , 31903208.

    • Search Google Scholar
    • Export Citation
  • Crawley, M. J., 2005: Statistics: An Introduction Using R. Wiley, 327 pp.

  • Davidson, N. E., G. J. Holland, J. L. McBride, and T. D. Keenan, 1990: On the formation of AMEX tropical cyclones Irma and Jason. Mon. Wea. Rev., 118 , 19812000.

    • Search Google Scholar
    • Export Citation
  • DeMaria, M., and J. Kaplan, 1994: A Statistical Hurricane Intensity Prediction Scheme (SHIPS) for the Atlantic basin. Wea. Forecasting, 9 , 209220.

    • Search Google Scholar
    • Export Citation
  • DeMaria, M., and J. Kaplan, 1999: An updated Statistical Hurricane Intensity Prediction Scheme (SHIPS) for the Atlantic and eastern North Pacific basins. Wea. Forecasting, 14 , 326337.

    • Search Google Scholar
    • Export Citation
  • DeMaria, M., M. Mainelli, L. K. Shay, and J. A. Knaff, 2005: Further improvements to the Statistical Hurricane Intensity Prediction Scheme (SHIPS). Wea. Forecasting, 20 , 531543.

    • Search Google Scholar
    • Export Citation
  • Dunion, J. P., and C. S. Velden, 2004: The impact of the Saharan air layer on Atlantic tropical cyclone activity. Bull. Amer. Meteor. Soc., 85 , 353365.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1986: An air–sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. J. Atmos. Sci., 43 , 585604.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1989: The finite-amplitude nature of tropical cyclogenesis. J. Atmos. Sci., 46 , 34313456.

  • Everitt, B. S., 2005: An R and S-Plus Companion to Multivariate Analysis. Springer-Verlag, 236 pp.

  • Frank, N. L., and G. Clark, 1980: Atlantic tropical systems of 1979. Mon. Wea. Rev., 108 , 966972.

  • Gray, W. M., 1968: Global view of the origin of tropical disturbances and storms. Mon. Wea. Rev., 96 , 669700.

  • Gray, W. M., 1975: Tropical cyclone genesis. Tech. Rep. 234, 121 pp. [Available from Dept. of Atmospheric Sciences, Colorado State University, Ft. Collins, CO 80523].

    • Search Google Scholar
    • Export Citation
  • Hennon, C. C., and J. S. Hobgood, 2003: Forecasting tropical cyclone cyclogenesis over the Atlantic basin using large-scale data. Mon. Wea. Rev., 131 , 29272940.

    • Search Google Scholar
    • Export Citation
  • Hennon, C. C., C. Marzban, and J. S. Hobgood, 2005: Improving tropical cyclogenesis statistical model forecasts through the application of a neural network classifier. Wea. Forecasting, 20 , 10731083.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8 , 3855.

    • Search Google Scholar
    • Export Citation
  • Kerns, B. W., K. M. Greene, and E. J. Zipser, 2008: Four years of tropical ERA-40 vorticity maxima tracks. Part I: Climatology and vertical vorticity structure. Mon. Wea. Rev., 136 , 43014319.

    • Search Google Scholar
    • Export Citation
  • Kurihara, Y., and R. E. Tuleya, 1981: A numerical simulation study on the genesis of a tropical storm. Mon. Wea. Rev., 109 , 16291653.

    • Search Google Scholar
    • Export Citation
  • Landsea, C. W., 1993: A climatology of intense (or major) Atlantic hurricanes. Mon. Wea. Rev., 121 , 17031713.

  • Lee, C. S., 1989: Observational analysis of tropical cyclogenesis in the western North Pacific. Part I: Structural evolution of cloud clusters. J. Atmos. Sci., 46 , 25802598.

    • Search Google Scholar
    • Export Citation
  • Lonfat, M., F. D. Marks, and S. S. Chen, 2004: Precipitation distribution in tropical cyclones using the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager: A global perspective. Mon. Wea. Rev., 132 , 16451660.

    • Search Google Scholar
    • Export Citation
  • Love, G., 1985: Cross-equatorial influence of winter hemisphere subtropical cold surges. Mon. Wea. Rev., 113 , 14871498.

  • Marzban, C., 1998: Scalar measures of performance in rare-event situations. Wea. Forecasting, 13 , 753763.

  • McBride, J. L., and R. Zehr, 1981: Observational analysis of tropical cyclone formation. Part II: Comparison of non-developing versus developing systems. J. Atmos. Sci., 38 , 11321151.

    • Search Google Scholar
    • Export Citation
  • Perrone, T. J., and P. R. Lowe, 1986: A statistically derived prediction procedure for tropical storm formation. Mon. Wea. Rev., 114 , 165177.

    • Search Google Scholar
    • Export Citation
  • Ramage, C. S., 1974: Monsoonal influences on the annual variation of tropical cyclone development over the Indian and Pacific Oceans. Mon. Wea. Rev., 102 , 745753.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., 1988: A real-time global sea surface temperature analysis. J. Climate, 1 , 7586.

  • Ritchie, E. A., and G. J. Holland, 1997: Scale interactions during the formation of Typhoon Irving. Mon. Wea. Rev., 125 , 13771396.

  • Rossow, W. B., and R. A. Schiffer, 1991: ISCCP cloud data products. Bull. Amer. Meteor. Soc., 72 , 220.

  • Rotunno, D. J., and K. Emanuel, 1987: An air-sea interaction theory for tropical cyclones. Part II: Evolutionary study using a non-hydrostatic axisymmetric numerical model. J. Atmos. Sci., 44 , 542561.

    • Search Google Scholar
    • Export Citation
  • Simpson, J., E. Ritchie, G. J. Holland, J. Halverson, and S. Stewart, 1997: Mesoscale interactions in tropical cyclone genesis. Mon. Wea. Rev., 125 , 26432661.

    • Search Google Scholar
    • Export Citation
  • Tuleya, R. E., and Y. Kurihara, 1981: A numerical study on the effects of environmental flow on tropical storm genesis. Mon. Wea. Rev., 109 , 24872506.

    • Search Google Scholar
    • Export Citation
  • Uppala, S. M., and Coauthors, 2005: The ERA-40 re-analysis. Quart. J. Roy. Meteor. Soc., 131 , 29613012.

  • Zehr, R. M., 1992: Tropical cyclogenesis in the western North Pacific. NOAA Tech. Rep. NESDIS 61, 181 pp.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 181 70 10
PDF Downloads 123 59 3