Quantifying the Imprint of a Severe Hector Thunderstorm during ACTIVE/SCOUT-O3 onto the Water Content in the Upper Troposphere/Lower Stratosphere

Charles Chemel Centre for Atmospheric and Instrumentation Research, University of Hertfordshire, Hatfield, United Kingdom

Search for other papers by Charles Chemel in
Current site
Google Scholar
PubMed
Close
,
Maria R. Russo Centre for Atmospheric Science, University of Cambridge, Cambridge, United Kingdom

Search for other papers by Maria R. Russo in
Current site
Google Scholar
PubMed
Close
,
John A. Pyle Centre for Atmospheric Science, University of Cambridge, Cambridge, United Kingdom

Search for other papers by John A. Pyle in
Current site
Google Scholar
PubMed
Close
,
Ranjeet S. Sokhi Centre for Atmospheric and Instrumentation Research, University of Hertfordshire, Hatfield, United Kingdom

Search for other papers by Ranjeet S. Sokhi in
Current site
Google Scholar
PubMed
Close
, and
Cornelius Schiller Institute for Chemistry and Geodynamics, Forschungszentrum Jülich, Jülich, Germany

Search for other papers by Cornelius Schiller in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The development of a severe Hector thunderstorm that formed over the Tiwi Islands, north of Australia, during the Aerosol and Chemical Transport in Tropical Convection/Stratospheric-Climate Links with Emphasis on the Upper Troposphere and Lower Stratosphere (ACTIVE/SCOUT-O3) field campaign in late 2005, is simulated by the Advanced Research Weather Research and Forecasting (ARW) model and the Met Office Unified Model (UM). The general aim of this paper is to investigate the role of isolated deep convection over the tropics in regulating the water content in the upper troposphere/lower stratosphere (UT/LS). Using a horizontal resolution as fine as 1 km, the numerical simulations reproduce the timing, structure, and strength of Hector fairly well when compared with field campaign observations. The sensitivity of results from ARW to horizontal resolution is investigated by running the model in a large-eddy simulation mode with a horizontal resolution of 250 m. While refining the horizontal resolution to 250 m leads to a better representation of convection with respect to rainfall, the characteristics of the Hector thunderstorm are basically similar in space and time to those obtained in the 1-km-horizontal-resolution simulations. Several overshooting updrafts penetrating the tropopause are produced in the simulations during the mature stage of Hector. The penetration of rising towering cumulus clouds into the LS maintains the entrainment of air at the interface between the UT and the LS. Vertical exchanges resulting from this entrainment process have a significant impact on the redistribution of atmospheric constituents within the UT/LS region at the scale of the islands. In particular, a large amount of water is injected in the LS. The fate of the ice particles as Hector develops drives the water vapor mixing ratio to saturation by sublimation of the injected ice particles, moistening the air in the LS. The moistening was found to be fairly significant above 380 K and averaged about 0.06 ppmv in the range 380–420 K for ARW. As for UM, the moistening was found to be much larger (about 2.24 ppmv in the range of 380–420 K) than for ARW. This result confirms that convective transport can play an important role in regulating the water vapor mixing ratio in the LS.

Corresponding author address: Dr. Charles Chemel, Centre for Atmospheric and Instrumentation Research, University of Hertfordshire, College Lane Campus, Hatfield, Hertfordshire AL10 9AB, United Kingdom. Email: c.chemel@herts.ac.uk

Abstract

The development of a severe Hector thunderstorm that formed over the Tiwi Islands, north of Australia, during the Aerosol and Chemical Transport in Tropical Convection/Stratospheric-Climate Links with Emphasis on the Upper Troposphere and Lower Stratosphere (ACTIVE/SCOUT-O3) field campaign in late 2005, is simulated by the Advanced Research Weather Research and Forecasting (ARW) model and the Met Office Unified Model (UM). The general aim of this paper is to investigate the role of isolated deep convection over the tropics in regulating the water content in the upper troposphere/lower stratosphere (UT/LS). Using a horizontal resolution as fine as 1 km, the numerical simulations reproduce the timing, structure, and strength of Hector fairly well when compared with field campaign observations. The sensitivity of results from ARW to horizontal resolution is investigated by running the model in a large-eddy simulation mode with a horizontal resolution of 250 m. While refining the horizontal resolution to 250 m leads to a better representation of convection with respect to rainfall, the characteristics of the Hector thunderstorm are basically similar in space and time to those obtained in the 1-km-horizontal-resolution simulations. Several overshooting updrafts penetrating the tropopause are produced in the simulations during the mature stage of Hector. The penetration of rising towering cumulus clouds into the LS maintains the entrainment of air at the interface between the UT and the LS. Vertical exchanges resulting from this entrainment process have a significant impact on the redistribution of atmospheric constituents within the UT/LS region at the scale of the islands. In particular, a large amount of water is injected in the LS. The fate of the ice particles as Hector develops drives the water vapor mixing ratio to saturation by sublimation of the injected ice particles, moistening the air in the LS. The moistening was found to be fairly significant above 380 K and averaged about 0.06 ppmv in the range 380–420 K for ARW. As for UM, the moistening was found to be much larger (about 2.24 ppmv in the range of 380–420 K) than for ARW. This result confirms that convective transport can play an important role in regulating the water vapor mixing ratio in the LS.

Corresponding author address: Dr. Charles Chemel, Centre for Atmospheric and Instrumentation Research, University of Hertfordshire, College Lane Campus, Hatfield, Hertfordshire AL10 9AB, United Kingdom. Email: c.chemel@herts.ac.uk

Save
  • Allen, G., and Coauthors, 2008: Aerosol and trace-gas measurements in the Darwin area during the wet season. J. Geophys. Res., 113 , D06306. doi:10.1029/2007JD008706.

    • Search Google Scholar
    • Export Citation
  • Atticks, M. G., and G. D. Robinson, 1983: Some features of the structure of the tropical tropopause. Quart. J. Roy. Meteor. Soc., 109 , 295308.

    • Search Google Scholar
    • Export Citation
  • Balaji, V., and T. L. Clark, 1988: Scale selection in locally forced convective fields and the initiation of deep cumulus. J. Atmos. Sci., 45 , 31883211.

    • Search Google Scholar
    • Export Citation
  • Brewer, A. W., 1949: Evidence for a world circulation provided by the measurements of helium and water vapour distribution in the stratosphere. Quart. J. Roy. Meteor. Soc., 75 , 351363.

    • Search Google Scholar
    • Export Citation
  • Brier, G. W., and J. Simpson, 1969: Tropical cloudiness and rainfall related to pressure and tidal variations. Quart. J. Roy. Meteor. Soc., 95 , 120147.

    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., J. C. Wyngaard, and J. M. Fritsch, 2003: Resolution requirements for the simulation of deep moist convection. Mon. Wea. Rev., 131 , 23942416.

    • Search Google Scholar
    • Export Citation
  • Carbone, R. E., J. W. Wilson, T. D. Keenan, and J. M. Hacker, 2000: Tropical island convection in the absence of significant topography. Part I: Life cycle of diurnally forced convection. Mon. Wea. Rev., 128 , 34593480.

    • Search Google Scholar
    • Export Citation
  • Chaboureau, J-P., J-P. Cammas, J. Duron, P. J. Mascart, N. M. Sitnikov, and H-J. Voessing, 2007: A numerical study of tropical cross-tropopause transport by convective overshoots. Atmos. Chem. Phys., 7 , 17311740.

    • Search Google Scholar
    • Export Citation
  • Chen, S. S., and R. A. Houze Jr., 1997: Diurnal variation and life-cycle of deep convective systems over the tropical Pacific warm pool. Quart. J. Roy. Meteor. Soc., 123 , 357388.

    • Search Google Scholar
    • Export Citation
  • Collins, W. D., and Coauthors, 2006: The formulation and atmospheric simulation of the Community Atmosphere Model Version 3 (CAM3). J. Climate, 19 , 21442161.

    • Search Google Scholar
    • Export Citation
  • Connolly, P. J., T. W. Choularton, M. W. Gallagher, K. N. Bower, M. J. Flynn, and J. A. Whiteway, 2006: Cloud-resolving simulations of intense tropical Hector thunderstorms: Implications for aerosol-cloud interactions. Quart. J. Roy. Meteor. Soc., 132 , 30793106.

    • Search Google Scholar
    • Export Citation
  • Corti, T., and Coauthors, 2008: Unprecedented evidence for deep convection hydrating the tropical stratosphere. Geophys. Res. Lett., 35 , L10810. doi:10.1029/2008GL033641.

    • Search Google Scholar
    • Export Citation
  • Crook, N. A., 2001: Understanding Hector: The dynamics of island thunderstorms. Mon. Wea. Rev., 129 , 15501563.

  • Dailey, P. S., and R. G. Fovell, 1999: Numerical simulation of the interaction between the sea-breeze front and horizontal convective rolls. Part I: Offshore ambient flow. Mon. Wea. Rev., 127 , 858878.

    • Search Google Scholar
    • Export Citation
  • Danielsen, E. F., 1982: A dehydration mechanism for the stratosphere. Geophys. Res. Lett., 9 , 605608.

  • Danielsen, E. F., 1993: In situ evidence of rapid, vertical, irreversible transport of lower tropospheric air into the lower tropical stratosphere by convective cloud turrets and by large-scale upwelling in tropical cyclones. J. Geophys. Res., 98 , 86658681.

    • Search Google Scholar
    • Export Citation
  • Davies, T., M. J. P. Cullen, A. J. Malcolm, M. H. Mawson, A. Staniforth, A. A. White, and N. Wood, 2005: A new dynamical core for the Met Office’s global and regional modelling of the atmosphere. Quart. J. Roy. Meteor. Soc., 131 , 17591782.

    • Search Google Scholar
    • Export Citation
  • Deardorff, J. W., 1980: Stratocumulus-capped mixed layers derived from a three-dimensional model. Bound.-Layer Meteor., 18 , 495527.

  • Dessler, A. E., 1998: A reexamination of the “stratospheric fountain” hypothesis. Geophys. Res. Lett., 25 , 41654168.

  • Dessler, A. E., 2002: The effect of deep, tropical convection on the tropical tropopause layer. J. Geophys. Res., 107 , 4033. doi:10.1029/2001JD000511.

    • Search Google Scholar
    • Export Citation
  • Dessler, A. E., T. F. Hanisco, and S. Fueglistaler, 2007: Effects of convective ice lofting on H2O and HDO in the tropical tropopause layer. J. Geophys. Res., 112 , D18309. doi:10.1029/2007JD008609.

    • Search Google Scholar
    • Export Citation
  • Dickerson, R. R., and Coauthors, 1987: Thunderstorms: An important mechanism in the transport of air pollutants. Science, 235 , 460465.

    • Search Google Scholar
    • Export Citation
  • Edwards, J. M., and A. Slingo, 1996: Studies with a flexible new radiation code. I: Choosing a configuration for a large-scale model. Quart. J. Roy. Meteor. Soc., 122 , 689719.

    • Search Google Scholar
    • Export Citation
  • Ek, M. B., K. E. Mitchell, Y. Lin, E. Rogers, P. Grunmann, V. Koren, G. Gayno, and J. D. Tarpley, 2003: Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. J. Geophys. Res., 108 , 8851. doi:10.1029/2002JD003296.

    • Search Google Scholar
    • Export Citation
  • Essery, R. L. H., M. J. Best, R. A. Betts, P. M. Cox, and C. M. Taylor, 2003: Explicit representation of subgrid heterogeneity in a GCM land surface scheme. J. Hydrometeor., 4 , 530543.

    • Search Google Scholar
    • Export Citation
  • Etling, D., and R. A. Brown, 1993: Roll vortices in the planetary boundary layer: A review. Bound.-Layer Meteor., 65 , 215248.

  • Farr, T. G., and Coauthors, 2007: The Shuttle Radar Topography Mission. Rev. Geophys., 45 , RG2004. doi:10.1029/2005RG000183.

  • Folkins, I., 2002: Origin of lapse rate changes in the upper tropical troposphere. J. Atmos. Sci., 59 , 9921005.

  • Folkins, I., M. Loewenstein, J. Podolske, S. J. Oltmans, and M. Proffitt, 1999: A barrier to vertical mixing at 14 km in the tropics: Evidence from ozonesondes and aircraft measurements. J. Geophys. Res., 104 , 2209522102.

    • Search Google Scholar
    • Export Citation
  • Folkins, I., K. K. Kelly, and E. M. Weinstock, 2002: A simple explanation for the increase in relative humidity between 11 and 14 km in the tropics. J. Geophys. Res., 107 , 4736. doi:10.1029/2002JD002185.

    • Search Google Scholar
    • Export Citation
  • Forster, P., and K. P. Shine, 1999: Stratospheric water vapour changes as a possible contributor to observed stratospheric cooling. Geophys. Res. Lett., 26 , 33093312.

    • Search Google Scholar
    • Export Citation
  • Fovell, R. G., and P. S. Dailey, 2001: Numerical simulation of the interaction between the sea-breeze front and horizontal convective rolls. Part II: Alongshore ambient flow. Mon. Wea. Rev., 129 , 20572072.

    • Search Google Scholar
    • Export Citation
  • Friedl, M. A., and Coauthors, 2002: Global land cover mapping from MODIS: Algorithms and early results. Remote Sens. Environ., 83 , 287302.

    • Search Google Scholar
    • Export Citation
  • Fueglistaler, S., and P. H. Haynes, 2005: Control of interannual and longer-term variability of stratospheric water vapor. J. Geophys. Res., 110 , D24108. doi:10.1029/2005JD006019.

    • Search Google Scholar
    • Export Citation
  • Gettelman, A., and A. H. Sobel, 2000: Direct diagnoses of stratosphere–troposphere exchange. J. Atmos. Sci., 57 , 316.

  • Gettelman, A., and T. Birner, 2007: Insights into tropical tropopause layer processes using global models. J. Geophys. Res., 112 , D23104. doi:10.1029/2007JD008945.

    • Search Google Scholar
    • Export Citation
  • Gettelman, A., J. Harries, and P. W. Mote, 2000: Distribution and variability of water vapour in the upper troposphere and lower stratosphere. SPARC Assessment of Upper Tropospheric and Stratospheric Water Vapour, WMO/TD 1043, SPARC Rep. 2 of WCRP-113, D. Kley, J. M. Russell III, and C. Phillips, Eds., World Meteorological Organization, 196–264.

    • Search Google Scholar
    • Export Citation
  • Golding, B. W., 1992: An efficient non-hydrostatic forecast model. Meteor. Atmos. Phys., 50 , 89103.

  • Golding, B. W., 1993: A numerical investigation of tropical island thunderstorms. Mon. Wea. Rev., 121 , 14171433.

  • Gray, W. M., and R. W. Jacobson Jr., 1977: Diurnal variation of deep cumulus convection. Mon. Wea. Rev., 105 , 11711188.

  • Gregory, D., and P. R. Rowntree, 1990: A mass flux convection scheme with representation of cloud ensemble characteristics and stability-dependent closure. Mon. Wea. Rev., 118 , 14831506.

    • Search Google Scholar
    • Export Citation
  • Grell, G. A., and D. Dévényi, 2002: A generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geophys. Res. Lett., 29 , 1693. doi:10.1029/2002GL015311.

    • Search Google Scholar
    • Export Citation
  • Grosvenor, D. P., T. W. Choularton, H. Coe, and G. Held, 2007: A study of the effect of over-shooting deep convection on the water content of the TTL and lower stratosphere from Cloud Resolving Model simulations. Atmos. Chem. Phys., 7 , 49775002.

    • Search Google Scholar
    • Export Citation
  • Hamilton, K., R. A. Vincent, and P. T. May, 2004: Darwin Area Wave Experiment (DAWEX) field campaign to study gravity wave generation and propagation. J. Geophys. Res., 109 , D20S01. doi:10.1029/2003JD004393.

    • Search Google Scholar
    • Export Citation
  • Hastings, D. A., and P. K. Dunbar, 1998: Development and assessment of the Global Land One-km Base Elevation digital elevation model (GLOBE). ISPRS Archives, 32 , 218221.

    • Search Google Scholar
    • Export Citation
  • Highwood, E. J., and B. J. Hoskins, 1998: The tropical tropopause. Quart. J. Roy. Meteor. Soc., 124 , 15741604.

  • Holland, G. J., J. L. McBride, R. K. Smith, D. Jasper, and T. D. Keenan, 1986: The BMRC Australian Monsoon Experiment: AMEX. Bull. Amer. Meteor. Soc., 67 , 14661472.

    • Search Google Scholar
    • Export Citation
  • Holton, J. R., and A. Gettelman, 2001: Horizontal transport and the dehydration of the stratosphere. Geophys. Res. Lett., 28 , 27992802.

    • Search Google Scholar
    • Export Citation
  • Holton, J. R., P. H. Haynes, M. E. McIntyre, A. R. Douglass, R. B. Rood, and L. Pfister, 1995: Stratosphere-troposphere exchange. Rev. Geophys., 33 , 403439.

    • Search Google Scholar
    • Export Citation
  • Hong, S-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134 , 23182341.

    • Search Google Scholar
    • Export Citation
  • Houze Jr., R. A., S. G. Geotis, F. D. Marks Jr., and A. K. West, 1981: Winter monsoon convection in the vicinity of North Borneo. Part I: Structure and time variation of clouds and precipitation. Mon. Wea. Rev., 109 , 15951614.

    • Search Google Scholar
    • Export Citation
  • Jensen, E. J., L. Pfister, A. S. Ackerman, and A. Tabazadeh, 2001: A conceptual model of the dehydration of air due to freeze-drying by optically thin, laminar cirrus rising slowly across the tropical tropopause. J. Geophys. Res., 106 , 1723717252.

    • Search Google Scholar
    • Export Citation
  • Jensen, E. J., A. S. Ackerman, and J. A. Smith, 2007: Can overshooting convection dehydrate the tropical tropopause layer? J. Geophys. Res., 112 , D11209. doi:10.1029/2006JD007943.

    • Search Google Scholar
    • Export Citation
  • Keenan, T. D., and L. R. Brody, 1988: Synoptic-scale modulation of convection during the Australian summer monsoon. Mon. Wea. Rev., 116 , 7185.

    • Search Google Scholar
    • Export Citation
  • Keenan, T. D., and R. E. Carbone, 1992: A preliminary morphology of precipitation systems in tropical northern Australia. Quart. J. Roy. Meteor. Soc., 118 , 283326.

    • Search Google Scholar
    • Export Citation
  • Keenan, T. D., J. McBride, G. Holland, N. Davidson, and B. Gunn, 1989a: Diurnal variations during the Australian Monsoon Experiment (AMEX) Phase II. Mon. Wea. Rev., 117 , 25352552.

    • Search Google Scholar
    • Export Citation
  • Keenan, T. D., B. R. Morton, M. J. Manton, and G. J. Holland, 1989b: The Island Thunderstorm Experiment (ITEX)—A study of tropical thunderstorms in the Maritime Continent. Bull. Amer. Meteor. Soc., 70 , 152159.

    • Search Google Scholar
    • Export Citation
  • Keenan, T. D., B. R. Morton, X. S. Zhang, and K. Nyguen, 1990: Some characteristics of thunderstorms over Bathurst and Melville Islands near Darwin, Australia. Quart. J. Roy. Meteor. Soc., 116 , 11531172.

    • Search Google Scholar
    • Export Citation
  • Keenan, T. D., B. Ferrier, and J. Simpson, 1994: Development and structure of a Maritime Continent thunderstorm. Meteor. Atmos. Phys., 53 , 185222.

    • Search Google Scholar
    • Export Citation
  • Keenan, T. D., K. Glasson, F. Cummings, T. S. Bird, J. Keeler, and J. Lutz, 1998: The BMRC/NCAR C-band polarimetric (C-POL) radar system. J. Atmos. Oceanic Technol., 15 , 871886.

    • Search Google Scholar
    • Export Citation
  • Keenan, T. D., and Coauthors, 2000: The Maritime Continent Thunderstorm Experiment (MCTEX): Overview and some results. Bull. Amer. Meteor. Soc., 81 , 24332455.

    • Search Google Scholar
    • Export Citation
  • Keith, D. W., 2000: Stratosphere-troposphere exchange: Inferences from the isotopic composition of water vapor. J. Geophys. Res., 105 , 1516715173.

    • Search Google Scholar
    • Export Citation
  • Kelly, K. K., M. H. Proffitt, K. R. Chan, M. Loewenstein, J. R. Podolske, S. E. Strahan, J. C. Wilson, and D. Kley, 1993: Water vapor and cloud water measurements over Darwin during the STEP 1987 tropical mission. J. Geophys. Res., 98 , 87138723.

    • Search Google Scholar
    • Export Citation
  • Kingsmill, D. E., 1995: Convection initiation associated with a sea-breeze front, a gust front, and their interaction. Mon. Wea. Rev., 123 , 29132933.

    • Search Google Scholar
    • Export Citation
  • Kirk-Davidoff, D. B., E. J. Hintsa, J. G. Anderson, and D. W. Keith, 1999: The effect of climate change on ozone depletion through changes in stratospheric water vapour. Nature, 402 , 399401.

    • Search Google Scholar
    • Export Citation
  • Kley, D., A. L. Schmeltekopf, K. Kelly, R. H. Winkler, T. L. Thompson, and M. McFarland, 1982: Transport of water through the tropical tropopause. Geophys. Res. Lett., 9 , 617620.

    • Search Google Scholar
    • Export Citation
  • Kraus, E. B., 1963: The diurnal precipitation change over the sea. J. Atmos. Sci., 20 , 551556.

  • Kritz, M. A., S. W. Rosner, K. K. Kelly, M. Loewenstein, and R. Chan, 1993: Radon measurements in the lower tropical stratosphere: Evidence for rapid vertical transport and dehydration of tropospheric air. J. Geophys. Res., 98 , 87258736.

    • Search Google Scholar
    • Export Citation
  • Kuang, Z., and C. S. Bretherton, 2004: Convective influence on the heat balance of the tropical tropopause layer: A cloud-resolving model study. J. Atmos. Sci., 61 , 29192927.

    • Search Google Scholar
    • Export Citation
  • Kuettner, J. P., 1971: Cloud bands in the earth’s atmosphere: Observations and theory. Tellus, 23 , 404426.

  • Kullgren, K., and K-Y. Kim, 2006: Physical mechanisms of the Australian summer monsoon: 1. Seasonal cycle. J. Geophys. Res., 111 , D20104. doi:10.1029/2005JD006807.

    • Search Google Scholar
    • Export Citation
  • Küpper, C., J. Thuburn, G. C. Craig, and T. Birner, 2004: Mass and water transport into the tropical stratosphere: A cloud-resolving simulation. J. Geophys. Res., 109 , D10111. doi:10.1029/2004JD004541.

    • Search Google Scholar
    • Export Citation
  • Liu, C., and M. W. Moncrieff, 1996: A numerical study of the effects of ambient flow and shear on density currents. Mon. Wea. Rev., 124 , 22822303.

    • Search Google Scholar
    • Export Citation
  • Liu, C., and E. J. Zipser, 2005: Global distribution of convection penetrating the tropical tropopause. J. Geophys. Res., 110 , D23104. doi:10.1029/2005JD006063.

    • Search Google Scholar
    • Export Citation
  • Lock, A. P., A. R. Brown, M. R. Bush, G. M. Martin, and R. N. B. Smith, 2000: A new boundary layer mixing scheme. Part I: Scheme description and single column model tests. Mon. Wea. Rev., 128 , 31773199.

    • Search Google Scholar
    • Export Citation
  • Loveland, T. R., B. C. Reed, J. F. Brown, D. O. Ohlen, J. Zhu, L. Yang, and J. W. Merchant, 2000: Development of a global land cover characteristics database and IGBP DISCover from 1-km AVHRR data. Int. J. Remote Sens., 21 , 13031330.

    • Search Google Scholar
    • Export Citation
  • Marécal, V., E. D. Rivière, G. Held, S. Cautenet, and S. Freitas, 2006: Modelling study of the impact of deep convection on the UTLS air composition–Part I: Analysis of ozone precursors. Atmos. Chem. Phys., 6 , 15671584.

    • Search Google Scholar
    • Export Citation
  • May, P. T., and D. K. Rajopadhyaya, 1999: Vertical velocity characteristics of deep convection over Darwin, Australia. Mon. Wea. Rev., 127 , 10561071.

    • Search Google Scholar
    • Export Citation
  • May, P. T., and A. Ballinger, 2007: The statistical characteristics of convective cells in a monsoon regime (Darwin, Northern Australia). Mon. Wea. Rev., 135 , 8292.

    • Search Google Scholar
    • Export Citation
  • May, P. T., J. H. Mather, G. Vaughan, C. Jakob, G. M. McFarquhar, K. N. Bower, and G. G. Mace, 2008: The Tropical Warm Pool International Cloud Experiment. Bull. Amer. Meteor. Soc., 89 , 629645.

    • Search Google Scholar
    • Export Citation
  • McBride, J. L., 1987: The Australian summer monsoon. Monsoon Meteorology, C. P. Chang and T. N. Krishnamurti, Eds., Clarendon Press, 60–92.

    • Search Google Scholar
    • Export Citation
  • Mote, P. W., and Coauthors, 1996: An atmospheric tape recorder: The imprint of tropical tropopause temperatures on stratospheric water vapor. J. Geophys. Res., 101 , 39894006.

    • Search Google Scholar
    • Export Citation
  • Newell, R. E., and S. Gould-Stewart, 1981: A stratospheric fountain? J. Atmos. Sci., 38 , 27892796.

  • Oliphant, A. J., A. P. Sturman, and N. J. Tapper, 2001: The evolution and structure of a tropical island sea/land breeze system, northern Australia. Meteor. Atmos. Phys., 78 , 4559.

    • Search Google Scholar
    • Export Citation
  • Pommereau, J-P., and Coauthors, 2007: An overview of the HIBISCUS campaign. Atmos. Chem. Phys. Discuss., 7 , 23892475.

  • Potter, B. E., and J. R. Holton, 1995: The role of monsoon convection in the dehydration of the lower tropical stratosphere. J. Atmos. Sci., 52 , 10341050.

    • Search Google Scholar
    • Export Citation
  • Ramage, C. S., 1968: Role of a tropical “Maritime Continent” in the atmospheric circulation. Mon. Wea. Rev., 96 , 365370.

  • Read, W. G., D. L. Wu, J. W. Waters, and H. C. Pumphrey, 2004: Dehydration in the tropical tropopause layer: Implications from the UARS Microwave Limb Sounder. J. Geophys. Res., 109 , D06110. doi:10.1029/2003JD004056.

    • Search Google Scholar
    • Export Citation
  • Reid, G. C., and K. S. Gage, 1996: The tropical tropopause over the western Pacific: Wave driving, convection, and the annual cycle. J. Geophys. Res., 101 , 2123321241.

    • Search Google Scholar
    • Export Citation
  • Riehl, H., and J. S. Malkus, 1958: On the heat balance in the equatorial trough zone. Geophysica, 6 , 503538.

  • Rivière, E. D., V. Marécal, N. Larsen, and S. Cautenet, 2006: Modelling study of the impact of deep convection on the UTLS air composition—Part 2: Ozone budget in the TTL. Atmos. Chem. Phys., 6 , 15851598.

    • Search Google Scholar
    • Export Citation
  • Robinson, F. J., and S. C. Sherwood, 2006: Modeling the impact of convective entrainment of the tropical tropopause. J. Atmos. Sci., 63 , 10131027.

    • Search Google Scholar
    • Export Citation
  • Robinson, F. J., S. C. Sherwood, and Y. Li, 2008: Resonant response of deep convection to surface hot spots. J. Atmos. Sci., 65 , 276286.

    • Search Google Scholar
    • Export Citation
  • Russell, P. B., L. Pfister, and H. B. Selkirk, 1993: The tropical experiment of the Stratosphere-Troposphere Exchange Project (STEP): Science objectives, operations, and summary findings. J. Geophys. Res., 98 , 85638589.

    • Search Google Scholar
    • Export Citation
  • Saito, K., and T. Kato, 1999: The Meteorological Research Institute mesoscale nonhydrostatic model (in Japanese). Meteorology Research Note 196, Meteorological Society of Japan, Tokyo, Japan, 169–195.

    • Search Google Scholar
    • Export Citation
  • Saito, K., T. Keenan, G. Holland, and K. Puri, 2001: Numerical simulation of the diurnal evolution of tropical island convection over the Maritime Continent. Mon. Wea. Rev., 129 , 378400.

    • Search Google Scholar
    • Export Citation
  • Schafer, R., P. T. May, T. D. Keenan, K. McGuffie, W. L. Ecklund, P. E. Johnston, and K. S. Gage, 2001: Boundary layer development over a tropical island during the Maritime Continent Thunderstorm Experiment. J. Atmos. Sci., 58 , 21632179.