Statistics and Dynamics of Aircraft Encounters of Turbulence over Greenland

Todd P. Lane The University of Melbourne, Melbourne, Australia

Search for other papers by Todd P. Lane in
Current site
Google Scholar
PubMed
Close
,
James D. Doyle Naval Research Laboratory, Monterey, California

Search for other papers by James D. Doyle in
Current site
Google Scholar
PubMed
Close
,
Robert D. Sharman National Center for Atmospheric Research,* Boulder, Colorado

Search for other papers by Robert D. Sharman in
Current site
Google Scholar
PubMed
Close
,
Melvyn A. Shapiro University of Bergen, Bergen, Norway, and Cooperative Institute for Research in Environmental Sciences, University of Colorado and the National Oceanographic and Atmospheric Administration, Boulder, Colorado

Search for other papers by Melvyn A. Shapiro in
Current site
Google Scholar
PubMed
Close
, and
Campbell D. Watson The University of Melbourne, Melbourne, Australia

Search for other papers by Campbell D. Watson in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Historical records of aviation turbulence encounters above Greenland are examined for the period from 2000 to 2006. These data identify an important flow regime that contributes to the occurrence of aircraft turbulence encounters, associated with the passage of surface cyclones that direct easterly or southeasterly flow over Greenland’s imposing terrain. The result of this incident flow is the generation of mountain waves that may become unstable through interactions with the background directional wind shear. It is shown that this regime accounted for approximately 40% of the significant turbulent events identified in the 7-yr database. In addition, two specific cases from the database are examined in more detail using a high-resolution mesoscale model. The model simulations highlight the important role of three-dimensional gravity wave–critical level interactions and demonstrate the utility of high-resolution forecasts in the prediction of such events.

Corresponding author address: Todd Lane, School of Earth Sciences, The University of Melbourne, Melbourne, VIC 3010, Australia. Email: tplane@unimelb.edu.au

Abstract

Historical records of aviation turbulence encounters above Greenland are examined for the period from 2000 to 2006. These data identify an important flow regime that contributes to the occurrence of aircraft turbulence encounters, associated with the passage of surface cyclones that direct easterly or southeasterly flow over Greenland’s imposing terrain. The result of this incident flow is the generation of mountain waves that may become unstable through interactions with the background directional wind shear. It is shown that this regime accounted for approximately 40% of the significant turbulent events identified in the 7-yr database. In addition, two specific cases from the database are examined in more detail using a high-resolution mesoscale model. The model simulations highlight the important role of three-dimensional gravity wave–critical level interactions and demonstrate the utility of high-resolution forecasts in the prediction of such events.

Corresponding author address: Todd Lane, School of Earth Sciences, The University of Melbourne, Melbourne, VIC 3010, Australia. Email: tplane@unimelb.edu.au

Save
  • Bacmeister, J. T., and M. R. Schoeberl, 1989: Breakdown of vertically propagating two-dimensional gravity waves forced by orography. J. Atmos. Sci., 46 , 21092134.

    • Search Google Scholar
    • Export Citation
  • Bacmeister, J. T., P. A. Newman, B. L. Gary, and K. R. Chan, 1994: An algorithm for forecasting mountain wave–related turbulence in the stratosphere. Wea. Forecasting, 9 , 241253.

    • Search Google Scholar
    • Export Citation
  • Booker, J. R., and F. P. Bretherton, 1967: The critical layer for internal gravity waves in shear flow. J. Fluid Mech., 27 , 513539.

  • Clark, T. L., and W. R. Peltier, 1984: Critical level reflection and resonant growth of nonlinear mountain waves. J. Atmos. Sci., 41 , 31223134.

    • Search Google Scholar
    • Export Citation
  • Clark, T. L., T. Keller, J. Coen, P. Neilley, H-M. Hsu, and W. D. Hall, 1997: Terrain-induced turbulence over Lantau Island: 7 June 1994 Tropical Storm Russ case study. J. Atmos. Sci., 54 , 17951814.

    • Search Google Scholar
    • Export Citation
  • Clark, T. L., and Coauthors, 2000: Origins of aircraft-damaging clear air turbulence during the 9 December 1992 Colorado downslope windstorm: Numerical simulations and comparison to observations. J. Atmos. Sci., 57 , 11051131.

    • Search Google Scholar
    • Export Citation
  • Dörnbrack, A., 1998: Turbulent mixing by breaking gravity waves. J. Fluid Mech., 375 , 113141.

  • Doyle, J. D., and D. R. Durran, 2002: The dynamics of mountain-wave-induced rotors. J. Atmos. Sci., 59 , 186201.

  • Doyle, J. D., and Q. Jiang, 2006: Observations and numerical simulations of mountain waves in the presence of directional wind shear. Quart. J. Roy. Meteor. Soc., 132 , 18771905.

    • Search Google Scholar
    • Export Citation
  • Doyle, J. D., and Coauthors, 2000: An intercomparison of model-predicted wave breaking for the 11 January 1972 Boulder windstorm. Mon. Wea. Rev., 128 , 901914.

    • Search Google Scholar
    • Export Citation
  • Doyle, J. D., M. A. Shapiro, Q. Jiang, and D. L. Bartels, 2005: Large-amplitude mountain wave breaking over Greenland. J. Atmos. Sci., 62 , 31063126.

    • Search Google Scholar
    • Export Citation
  • Franke, P. M., and W. A. Robinson, 1999: Nonlinear behavior in the propagation of atmospheric gravity waves. J. Atmos. Sci., 56 , 30103027.

    • Search Google Scholar
    • Export Citation
  • Frehlich, R., and R. Sharman, 2004: Estimates of turbulence from numerical weather prediction model output with applications to turbulence diagnosis and data assimilation. Mon. Wea. Rev., 132 , 23082324.

    • Search Google Scholar
    • Export Citation
  • Fritts, D. C., and M. J. Alexander, 2003: Gravity wave dynamics and effects in the middle atmosphere. Rev. Geophys., 41 , 1003. doi:10.1029/2001RG000106.

    • Search Google Scholar
    • Export Citation
  • Grubišić, V., and P. K. Smolarkiewicz, 1997: The effect of critical levels on 3D orographic flows: Linear regime. J. Atmos. Sci., 54 , 19431960.

    • Search Google Scholar
    • Export Citation
  • Hodur, R. M., 1997: The Naval Research Laboratory’s Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS). Mon. Wea. Rev., 125 , 14141430.

    • Search Google Scholar
    • Export Citation
  • Jiang, Q., and J. D. Doyle, 2004: Gravity wave breaking over the central Alps: Role of complex terrain. J. Atmos. Sci., 61 , 22492266.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77 , 437471.

  • Kim, Y-J., S. D. Eckermann, and H-Y. Chun, 2003: An overview of past, present and future of gravity-wave drag parametrization for numerical climate and weather prediction models. Atmos.–Ocean, 41 , 6598.

    • Search Google Scholar
    • Export Citation
  • Lane, T. P., R. D. Sharman, R. G. Frehlich, and J. M. Brown, 2006: Numerical simulations of the wake of Kauai. J. Appl. Meteor. Climatol., 45 , 13131331.

    • Search Google Scholar
    • Export Citation
  • Lilly, D. K., 1978: A severe downslope windstorm and aircraft turbulence event induced by a mountain wave. J. Atmos. Sci., 35 , 5977.

  • Lilly, D. K., and P. J. Kennedy, 1973: Observations of stationary mountain wave and its associated momentum flux and energy dissipation. J. Atmos. Sci., 30 , 11351152.

    • Search Google Scholar
    • Export Citation
  • Miles, J. W., and H. E. Huppert, 1968: Lee waves in a stratified flow. Part 2. Semi-circular obstacle. J. Fluid Mech., 33 , 803814.

  • Murray, R. J., and I. Simmonds, 1991: A numerical scheme for tracking cyclone centres from digital data. Part I: Development and operation of the scheme. Aust. Meteor. Mag., 39 , 155166.

    • Search Google Scholar
    • Export Citation
  • Ólafsson, H., and H. Ágústsson, 2009: Gravity wave breaking in easterly flow over Greenland and associated low level barrier- and reverse tip-jets. Meteor. Atmos. Phys., 104 , 191197.

    • Search Google Scholar
    • Export Citation
  • Peltier, W. R., and T. L. Clark, 1983: Nonlinear mountain waves in two and three spatial dimensions. Quart. J. Roy. Meteor. Soc., 109 , 527548.

    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., M. Crochet, and S. V. Venkateswaran, 1992: A study of mountain lee waves using clear-air radar. Quart. J. Roy. Meteor. Soc., 118 , 597627.

    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., P. J. Neiman, T. L. Keller, D. Levinson, and L. Fedor, 1997: Observations, simulations, and analysis of nonstationary trapped lee waves. J. Atmos. Sci., 54 , 13081333.

    • Search Google Scholar
    • Export Citation
  • Roe, G. H., 2005: Orographic precipitation. Annu. Rev. Earth Planet. Sci., 33 , 645671.

  • Schwartz, B., 1996: The quantitative use of PIREPs in developing aviation weather guidance products. Wea. Forecasting, 11 , 372384.

  • Sharman, R. D., and M. G. Wurtele, 2004: Three-dimensional structure of forced gravity waves and lee waves. J. Atmos. Sci., 61 , 664680.

    • Search Google Scholar
    • Export Citation
  • Sharman, R. D., C. Tebaldi, G. Wiener, and J. Wolff, 2006: An integrated approach to mid- and upper-level turbulence forecasting. Wea. Forecasting, 21 , 268287.

    • Search Google Scholar
    • Export Citation
  • Shutts, G., 1995: Gravity-wave drag parametrization over complex terrain: The effect of critical-level absorption in directional wind-shear. Quart. J. Roy. Meteor. Soc., 121 , 10051021.

    • Search Google Scholar
    • Export Citation
  • Smith, R. B., and V. Grubišić, 1993: Aerial observations of Hawaii’s wake. J. Atmos. Sci., 50 , 37283750.

  • Smolarkiewicz, P. K., and R. Rotunno, 1989: Low Froude number flow past three-dimensional obstacles. Part I: Baroclinically generated lee vortices. J. Atmos. Sci., 46 , 11541164.

    • Search Google Scholar
    • Export Citation
  • Thorpe, S. A., 1975: The excitation, dissipation, and interaction of internal waves in the deep ocean. J. Geophys. Res., 80 , 328338.

  • Thorpe, S. A., 1987: Transitional phenomena and the development of turbulence in stratified fluids: A review. J. Geophys. Res., 92 , (C5). 52315248.

    • Search Google Scholar
    • Export Citation
  • Uhlenbrock, N. L., K. M. Bedka, W. F. Feltz, and S. A. Ackerman, 2007: Mountain wave signatures in MODIS 6.7-μm imagery and their relation to pilot reports of turbulence. Wea. Forecasting, 22 , 662670.

    • Search Google Scholar
    • Export Citation
  • Wolff, J. K., and R. D. Sharman, 2008: Climatology of upper-level turbulence over the contiguous United States. J. Appl. Meteor. Climatol., 47 , 21982214.

    • Search Google Scholar
    • Export Citation
  • Wurtele, M. G., R. D. Sharman, and A. Datta, 1996: Atmospheric lee waves. Annu. Rev. Fluid Mech., 28 , 429476.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 790 297 25
PDF Downloads 426 163 18