• Baker, N. L., , and W. F. Campbell, 2004: The impact of AMSU-A radiance assimilation in the U.S. Navy’s Operational Global Atmospheric Prediction System (NOGAPS). Preprints, 13th Conf. on Satellite Meteorology and Oceanography, Norfolk, VA, Amer. Meteor. Soc., P3.1. [Available online at http://ams.confex.com/ams/13SATMET/techprogram/paper_80714.htm].

    • Search Google Scholar
    • Export Citation
  • Barnes, W. L., , T. S. Pagano, , and V. V. Salomonson, 1998: Prelaunch characteristics of the Moderate Resolution Imaging Spectroradiometer (MODIS) on EOS-AM1. IEEE Trans. Geosci. Remote Sens., 36 , 10881100.

    • Search Google Scholar
    • Export Citation
  • Beven, J., cited. 2008: Tropical Cyclone Report: Hurricane Karl. [Available online at http://www.nhc.noaa.gov/2004karl.shtml].

  • Bormann, N., , and J-N. Thépaut, 2004: Impact of MODIS polar winds in ECMWF’s 4DVAR data assimilation system. Mon. Wea. Rev., 132 , 929940.

    • Search Google Scholar
    • Export Citation
  • Bormann, N., , S. Saarinen, , G. Kelly, , and J-N. Thépaut, 2003: The spatial structure of observation errors in atmospheric motion vectors from geostationary satellite data. Mon. Wea. Rev., 131 , 706718.

    • Search Google Scholar
    • Export Citation
  • Cress, A., 2004: Impact of MODIS winds on the global NWP system of the German weather Service. Proc. Seventh Int. Winds Workshop, Helsinki, Finland, WMO, 249–253.

    • Search Google Scholar
    • Export Citation
  • Dworak, R., , and J. R. Key, 2009: 20 years of polar winds from AVHRR: Validation and comparison to the ERA-40. J. Appl. Meteor. Climatol., 48 , 2440.

    • Search Google Scholar
    • Export Citation
  • Esaias, W. E., and Coauthors, 1998: An overview of MODIS capabilities for ocean science observations. IEEE Trans. Geosci. Remote Sens., 36 , 12501265.

    • Search Google Scholar
    • Export Citation
  • Francis, J. A., 2002: Validation of reanalysis upper-level winds in the Arctic with independent rawinsonde data. Geophys. Res. Lett., 29 , 1315. doi:10.1029/2001GL014578.

    • Search Google Scholar
    • Export Citation
  • Francis, J. A., , E. Hunter, , and C-Z. Zou, 2005: Arctic tropospheric winds derived from TOVS satellite retrievals. J. Climate, 18 , 22702285.

    • Search Google Scholar
    • Export Citation
  • Frey, R. A., , S. A. Ackerman, , Y. Liu, , K. I. Strabala, , H. Zhang, , J. R. Key, , and X. Wang, 2008: Cloud detection with MODIS. Part I: Improvements in the MODIS cloud mask for Collection 5. J. Atmos. Oceanic Technol., 25 , 10571072.

    • Search Google Scholar
    • Export Citation
  • Gallimore, R., , and D. Johnson, 1981: The forcing of the meridional circulation of the isentropic zonally averaged circumpolar vortex. J. Atmos. Sci., 38 , 583599.

    • Search Google Scholar
    • Export Citation
  • Herman, L., 1993: High frequency satellite cloud motion at high latitudes. Preprints, Eighth Symp. on Meteorological Observations and Instrumentation, Anaheim, CA, Amer. Meteor. Soc., 465–468.

    • Search Google Scholar
    • Export Citation
  • Herman, L., , and F. Nagle, 1994: A comparison of POES satellite derived winds techniques in the Arctic at CIMSS. Preprints, Seventh Conf. on Satellite Meteorology and Oceanography, Monterey, CA, Amer. Meteor. Soc., 444–447.

    • Search Google Scholar
    • Export Citation
  • Hinzman, L. D., and Coauthors, 2005: Evidence and implications of recent climate change in northern Alaska and other Arctic regions. Climatic Change, 72 , 251298.

    • Search Google Scholar
    • Export Citation
  • Holton, J. R., 1992: An Introduction to Dynamic Meteorology. Academic Press, 511 pp.

  • Key, J. R., , D. Santek, , C. S. Velden, , N. Bormann, , J-N. Thépaut, , L. P. Riishojgaard, , Y. Zhu, , and W. P. Menzel, 2003: Cloud-drift and water vapor winds in the polar regions from MODIS. IEEE Trans. Geosci. Remote Sens., 41 , 482492.

    • Search Google Scholar
    • Export Citation
  • Key, J. R., , D. A. Santek, , C. S. Velden, , J. M. Daniels, , W. Bresky, , and W. P. Menzel, 2005: Polar winds from satellite imagers for numerical weather prediction and climate applications. Preprints, Eighth Conf. on Polar Meteorology and Oceanography, San Diego, CA, Amer. Meteor. Soc., 3.3. [Available online at http://ams.confex.com/ams/Annual2005/techprogram/paper_85381.htm].

    • Search Google Scholar
    • Export Citation
  • Krishnamurti, T. N., and Coauthors, 2003: Improved skill for the anomaly correlation of geopotential heights at 500 hPa. Mon. Wea. Rev., 131 , 10821102.

    • Search Google Scholar
    • Export Citation
  • Le Marshall, J., , A. Rea, , L. Leslie, , R. Seecamp, , and M. Dunn, 2004: Error characterization of atmospheric motion vectors. Aust. Meteor. Mag., 53 , 123131.

    • Search Google Scholar
    • Export Citation
  • Le Marshall, J., , J. Jung, , T. Zapotocny, , C. Redder, , M. Dunn, , J. Daniels, , and L. P. Riishogjaard, 2008: Impact of MODIS atmospheric motion vectors on a global NWP system. Aust. Meteor. Mag., 57 , 4551.

    • Search Google Scholar
    • Export Citation
  • Martin, J. E., 2006: Midlatitude Atmospheric Dynamics: A First Course. Wiley, 336 pp.

  • Menzel, W. P., 2001: Cloud tracking with satellite imagery: From the pioneering work of Ted Fujita to the present. Bull. Amer. Meteor. Soc., 82 , 3347.

    • Search Google Scholar
    • Export Citation
  • Nieman, S., , W. L. Smith, , C. M. Hayden, , D. Gray, , S. T. Wanzong, , C. S. Velden, , and J. Daniels, 1997: Fully automated cloud-drift winds in NESDIS operations. Bull. Amer. Meteor. Soc., 78 , 11211133.

    • Search Google Scholar
    • Export Citation
  • Palmén, E., , and C. Newton, 1969: Atmospheric Circulation Systems: Their Structure and Physical Interpretation. Academic Press, 603 pp.

  • Parrish, D., , and J. Derber, 1992: The National Meteorological Center’s spectral statistical interpolation analysis system. Mon. Wea. Rev., 120 , 17471763.

    • Search Google Scholar
    • Export Citation
  • Pyle, M., , D. Keyser, , and L. Bosart, 2004: A diagnostic study of jet streaks: Kinematic signatures and relationship to coherent tropopause disturbances. Mon. Wea. Rev., 132 , 297319.

    • Search Google Scholar
    • Export Citation
  • Rao, P., , C. Velden, , and S. Braun, 2002: The vertical error characteristics of GOES-derived winds: Description and experiments with numerical weather prediction. J. Appl. Meteor., 41 , 253271.

    • Search Google Scholar
    • Export Citation
  • Riishojgaard, L. P., , and Y. Zhu, 2004: Impact experiments on GMAO data assimilation and forecast systems with MODIS winds during MOWSAP. Proc. Seventh Int. Winds Workshop, Helsinki, Finland, WMO, 281–287.

    • Search Google Scholar
    • Export Citation
  • Riishojgaard, L. P., , M. Sienkiewicz, , and G. P. Lou, 2006: The impact on forecast skill of water vapor and window channel winds from MODIS. Proc. Eighth Int. Winds Workshop, Beijing, China, WMO. [Available online at http://www.eumetsat.int/idcplg?IdcService=GET_FILE&dDocName=PDF_CONF_P47_S7_01_RIISHOJGA_V&RevisionSelectionMethod=LatestReleased].

    • Search Google Scholar
    • Export Citation
  • Santek, D., 2007: The global impact of satellite-derived polar winds on model forecasts. Ph.D. dissertation, University of Wisconsin—Madison, 147 pp.

  • Santek, D., , and A. Winguth, 2007: A satellite view of internal waves induced by the Indian Ocean tsunami. Int. J. Remote Sens., 28 , (13–14). 29272936.

    • Search Google Scholar
    • Export Citation
  • Seemann, S. W., , J. Li, , W. P. Menzel, , and L. E. Gumley, 2003: Operational retrieval of atmospheric temperature, moisture, and ozone from MODIS infrared radiances. J. Appl. Meteor., 42 , 10721091.

    • Search Google Scholar
    • Export Citation
  • Shapiro, M., , and P. Kennedy, 1981: Research aircraft measurements of jet stream geostrophic and ageostrophic winds. J. Atmos. Sci., 38 , 26422652.

    • Search Google Scholar
    • Export Citation
  • Stewart, S. R., cited. 2008: Tropical Cyclone Report: Hurricane Ivan. [Available online at http://www.nhc.noaa.gov/2004ivan.shtml].

  • Su, X., , J. Derber, , J. Jung, , Y. Tahara, , D. Keyser, , and R. Treadon, 2003: The usage of GOES imager clear-sky radiance in the NCEP Global Data Assimilation System. Preprints, 12th Conf. on Satellite Meteorology and Oceanography, Long Beach, CA, Amer. Meteor. Soc., P3.20.

    • Search Google Scholar
    • Export Citation
  • Turner, J., , and D. E. Warren, 1989: Cloud track winds in the polar regions from sequences of AVHRR images. Int. J. Remote Sens., 10 , 695703.

    • Search Google Scholar
    • Export Citation
  • Uppala, S. M., and Coauthors, 2005: The ERA-40 reanalysis. Quart. J. Roy. Meteor. Soc., 131 , 29613012.

  • Velden, C., , T. Olander, , and S. Wanzong, 1998: The impact of multispectral GOES-8 wind information on Atlantic tropical cyclone track forecasts in 1995. Part I: Dataset methodology, description, and case analysis. Mon. Wea. Rev., 126 , 12021218.

    • Search Google Scholar
    • Export Citation
  • Velden, C., and Coauthors, 2005: Recent innovations in deriving tropospheric winds from meteorological satellites. Bull. Amer. Meteor. Soc., 86 , 205223.

    • Search Google Scholar
    • Export Citation
  • Zapotocny, T. H., , J. A. Jung, , J. F. Le Marshall, , and R. E. Treadon, 2008: A two-season impact study of four satellite data types and rawinsonde data in the NCEP Global Data Assimilation System. Wea. Forecasting, 23 , 80100.

    • Search Google Scholar
    • Export Citation
  • Zou, C-Z., , and M. Van Woert, 2002: Atmospheric wind retrievals from satellite soundings over the middle- and high-latitude oceans. Mon. Wea. Rev., 130 , 17711791.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 21 21 5
PDF Downloads 16 16 6

The Impact of Satellite-Derived Polar Winds on Lower-Latitude Forecasts

View More View Less
  • 1 Cooperative Institute for Meteorological Satellite Studies, Madison, Wisconsin
© Get Permissions
Restricted access

Abstract

The use of atmospheric motion vectors (AMVs) in NWP models continues to be an important source of information in data-sparse regions. These AMVs are derived from a time sequence of images from geostationary and polar-orbiting satellites. NWP centers have documented positive impact on model forecasts not only in regions where the AMVs are measured, but elsewhere as well. One example is the effect of the Moderate Resolution Imaging Spectroradiometer (MODIS) polar winds on forecasts in the middle and lower latitudes.

Using a preoperational version of NCEP’s Global Forecast System (GFS), an experiment was run during August and September 2004, with and without the MODIS polar winds. Several cases within this period were analyzed to determine how winds poleward of 70° latitude affect the height and wind fields into lower latitudes.

From the five cases examined, it was determined that the addition of the polar winds modifies the mass balance in synoptic-scale waves near the polar jet streams. This change in mass balance is evident in differences in the ageostrophic wind, which has an effect on the speed and amplitude of baroclinic waves that extends from the jet stream into lower latitudes in later forecast times. These results reveal the substantial impact that polar-only observations may have on the predictability of global weather systems.

Corresponding author address: David Santek, Cooperative Institute for Meteorological Satellite Studies, 1225 W. Dayton St., Madison, WI 53706. Email: dave.santek@ssec.wisc.edu

Abstract

The use of atmospheric motion vectors (AMVs) in NWP models continues to be an important source of information in data-sparse regions. These AMVs are derived from a time sequence of images from geostationary and polar-orbiting satellites. NWP centers have documented positive impact on model forecasts not only in regions where the AMVs are measured, but elsewhere as well. One example is the effect of the Moderate Resolution Imaging Spectroradiometer (MODIS) polar winds on forecasts in the middle and lower latitudes.

Using a preoperational version of NCEP’s Global Forecast System (GFS), an experiment was run during August and September 2004, with and without the MODIS polar winds. Several cases within this period were analyzed to determine how winds poleward of 70° latitude affect the height and wind fields into lower latitudes.

From the five cases examined, it was determined that the addition of the polar winds modifies the mass balance in synoptic-scale waves near the polar jet streams. This change in mass balance is evident in differences in the ageostrophic wind, which has an effect on the speed and amplitude of baroclinic waves that extends from the jet stream into lower latitudes in later forecast times. These results reveal the substantial impact that polar-only observations may have on the predictability of global weather systems.

Corresponding author address: David Santek, Cooperative Institute for Meteorological Satellite Studies, 1225 W. Dayton St., Madison, WI 53706. Email: dave.santek@ssec.wisc.edu

Save