• Abdullah, A. J., 1966: The spiral bands of a hurricane: A possible dynamic explanation. J. Atmos. Sci., 23 , 367375.

  • Anthes, R. A., 1982: Tropical Cyclones: Their Evolution, Structure, and Effects. Meteor. Mongr., No. 41, Amer. Meteor. Soc., 208 pp.

  • Atkinson, G. D., 1974: Investigation of gust factors in tropical cyclones. FLEWEACEN Tech. Note JTWC 74-1, 9 pp.

  • Austin, P. M., , and R. A. Houze, 1973: A technique for computing vertical transports by precipitating cumuli. J. Atmos. Sci., 30 , 11001111.

    • Search Google Scholar
    • Export Citation
  • Bureau of Meteorology, 2007: Severe tropical cyclone Larry. 24 pp. [Available online at http://www.bom.gov.au/weather/qld/cyclone/tc_larry/Larry_report.pdf].

    • Search Google Scholar
    • Export Citation
  • Depperman, C. E., 1947: Notes on the origin and structure of Phillipines typhoons. Bull. Amer. Meteor. Soc., 28 , 399404.

  • Dvorak, V. F., 1975: Tropical cyclone intensity analysis and forecasting from satellite imagery. Mon. Wea. Rev., 103 , 420430.

  • Dvorak, V. F., 1984: Tropical cyclone intensity evaluations using satellite data. Tech. Rep. NESDIS 11, NOAA, Washington, DC, 45 pp.

  • Emanuel, K. A., 1995: Sensitivity of tropical cyclones to surface exchange coefficients and a revised steady-state model incorporating eye dynamics. J. Atmos. Sci., 52 , 39693976.

    • Search Google Scholar
    • Export Citation
  • Fiorino, M., , and R. L. Elsberry, 1989: Some aspects of vortex structure related to tropical cyclone motion. J. Atmos. Sci., 46 , 975990.

    • Search Google Scholar
    • Export Citation
  • Frank, W. M., 1977: The structure and energetics of the tropical cyclone. I: Storm structure. Mon. Wea. Rev., 105 , 11191135.

  • Franklin, J. L., , M. L. Black, , and K. Valde, 2000: Eyewall wind profiles in hurricanes determined by GPS dropwindsondes. Preprints, 24th Conf. on Hurricanes and Tropical Meteorology, Ft. Lauderdale, FL, Amer. Meteor. Soc., 446–447.

    • Search Google Scholar
    • Export Citation
  • Franklin, J. L., , M. L. Black, , and K. Valde, 2003: GPS dropwind sonde wind profiles in hurricanes and their operational significance. Wea. Forecasting, 18 , 3244.

    • Search Google Scholar
    • Export Citation
  • Garratt, J. R., 1977: Review of drag coefficients over oceans and continents. Mon. Wea. Rev., 105 , 915929.

  • Gentry, R. C., 1984: A study of hurricane rainbands. National Hurricane Research Project Rep. 69, 85 pp.

  • Georgiou, P. N., 1985: Design wind speeds in tropical-cyclone prone areas. Ph.D. thesis, University of Western Ontario, 295 pp.

  • Gray, W. M., 1972: A diagnostic study of the planetary boundary layer over the tropical oceans. Paper 179, Dept. of Atmospheric Sciences, Colorado State University, 95 pp.

    • Search Google Scholar
    • Export Citation
  • Haltiner, G. J., , and F. L. Martin, 1957: Dynamical and Physical Meteorology. McGraw Hill Book Co. Inc., 470 pp.

  • Holland, G. J., 1980: An analytical model of the wind and pressure profiles in hurricanes. Mon. Wea. Rev., 108 , 12121218.

  • Holland, G. J., 2008: A revised hurricane pressure-wind model. Mon. Wea. Rev., 136 , 34323445.

  • Hughes, L. A., 1952: On the low-level wind structure of tropical storms. J. Meteor., 9 , 422428.

  • Iguchi, T., , T. Kozu, , R. Meneghini, , J. Awaka, , and K. Okamoto, 2000: Rainprofiling algorithm for the TRMM precipitation radar. J. Appl. Meteor., 39 , 20382052.

    • Search Google Scholar
    • Export Citation
  • Jorgensen, D. P., 1984: Meso-scale and convective-scale characteristics of mature hurricanes. Part I: General observations by research aircraft. J. Atmos. Sci., 41 , 12681285.

    • Search Google Scholar
    • Export Citation
  • Kaplan, J., , and M. DeMaria, 2003: Large-scale characteristics of rapidly intensifying tropical cyclones in the North Atlantic basin. Wea. Forecasting, 18 , 10931108.

    • Search Google Scholar
    • Export Citation
  • Kelley, O. A., , and J. Stout, 2004: Convective towers in eyewalls of tropical cyclones observed by the TRMM precipitation radar in 1998-2001. Preprints, 20th Conf. on Weather Analysis, Seattle, WA, Amer. Meteor. Soc., P1.43.

    • Search Google Scholar
    • Export Citation
  • Kepert, J., , and Y. Wang, 2001: The dynamics of boundary layer jets within the tropical cyclone core. Part I: Linear theory. J. Atmos. Sci., 58 , 24692484.

    • Search Google Scholar
    • Export Citation
  • Knaff, J. A., , and R. M. Zehr, 2007: Reexamination of tropical cyclone wind–pressure relationships. Wea. Forecasting, 22 , 7188.

  • Kossin, J. P., , J. A. Knaff, , H. I. Berger, , D. C. Herndon, , T. A. Cram, , C. S. Velden, , R. J. Murnane, , and J. D. Hawkins, 2007: Estimating hurricane wind structure in the absence of aircraft reconnaissance. Wea. Forecasting, 22 , 89101.

    • Search Google Scholar
    • Export Citation
  • Lahiri, A., 1981: A study of cloud spirals of tropical cyclones. Mausam, 32 , 155158.

  • Lajoie, F., 2007: A diagnostic study of the intensity of three tropical cyclones in the Australian region. Ph.D. thesis, University of Melbourne, Melbourne, Australia, 285 pp.

  • Lajoie, F., , and K. Walsh, 2008: A technique to determine the radius of maximum wind of a tropical cyclone. Wea. Forecasting, 23 , 10071015.

    • Search Google Scholar
    • Export Citation
  • Lajoie, F., , and K. Walsh, 2010: A diagnostic study of the intensity of three tropical cyclones in the Australian region. Part I: A synopsis of observed features of Tropical Cyclone Kathy (1984). Mon. Wea. Rev., 138 , 321.

    • Search Google Scholar
    • Export Citation
  • Lonfat, M., , F. D. Marks, , and S. S. Chen, 2004: Precipitation distribution in tropical cyclones using the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager: A global perspective. Mon. Wea. Rev., 132 , 16451660.

    • Search Google Scholar
    • Export Citation
  • Lucas, C., , E. J. Zipser, , and M. A. LeMone, 1994: Vertical velocity in oceanic convection off tropical Australia. J. Atmos. Sci., 51 , 31833192.

    • Search Google Scholar
    • Export Citation
  • Malkus, J. S., 1952: The slopes of cumulus clouds in relation to external wind shear. Quart. J. Roy. Meteor. Soc., 78 , 530542.

  • Malkus, J. S., 1958: On the structure and maintenance of the mature hurricane eye. J. Meteor., 15 , 337349.

  • Malkus, J. S., 1962: Large-scale interactions. The Sea, M. N. Hill, Ed., Ideas and Observations on Progress in the Study of the Seas. Vol. 1, Physical Oceanography, Wiley, 88–294.

    • Search Google Scholar
    • Export Citation
  • Malkus, J. S., , C. Ronne, , and M. Chaffee, 1961: Cloud patterns in hurricane Daisy, 1958. Tellus, 13 , 830.

  • Montgomery, M. T., , and R. J. Kallenbach, 1997: A theory for vortex Rossby-waves and its application to spiral bands and intensity changes in hurricanes. Quart. J. Roy. Meteor. Soc., 123 , 435465.

    • Search Google Scholar
    • Export Citation
  • Murphy, K., 1985: Cyclone Kathy at landfall. Australian Bureau of Meteorology, Northern Territory Region, Research Papers 1984–85, 52–60.

    • Search Google Scholar
    • Export Citation
  • Padya, B. M., 1976: Cyclone of the Mauritius region. Publication of the Meteorological Service of Mauritius, The Mauritius Printing Co. Ltd., Port Louis, Mauritius, 151 pp.

    • Search Google Scholar
    • Export Citation
  • Powell, M. D., 1980: Evaluations of diagnostic marine boundary-layer models applied to hurricanes. Mon. Wea. Rev., 108 , 757766.

  • Powell, M. D., 1982: The transition of the Hurricane Frederic boundary layer wind field from the open Gulf of Mexico to landfall. Mon. Wea. Rev., 110 , 19121932.

    • Search Google Scholar
    • Export Citation
  • Riehl, H., 1954: Tropical Meteorology. McGraw-Hill, 392 pp.

  • Riehl, H., 1963: Some relations between wind and thermal structure of steady state hurricanes. J. Atmos. Sci., 20 , 276287.

  • Schubert, W. H., , M. T. Montgomery, , R. K. Taft, , T. A. Guinn, , S. R. Fulton, , J. P. Kossin, , and J. P. Edwards, 1999: Polygonal eyewalls, asymmetric eye contraction, and potential vorticity mixing in hurricanes. J. Atmos. Sci., 56 , 11971223.

    • Search Google Scholar
    • Export Citation
  • Senn, H., , and H. Hiser, 1957: Tracking hurricanes with radar. Proc. Sixth Weather Radar Conf., Cambridge, MA, Amer. Meteor. Soc., 165–170.

    • Search Google Scholar
    • Export Citation
  • Senn, H. V., , and H. W. Hiser, 1959: Note on the origin of hurricane radar spiral bands and the echoes which form them. U.S. Weather Bureau, N. H. R. P. Rep. 26, 16 pp.

    • Search Google Scholar
    • Export Citation
  • Shapiro, L. J., 1983: The asymmetric boundary layer flow under a translating hurricane. J. Atmos. Sci., 40 , 19841988.

  • Shea, D. J., 1972: The structure and dynamics of the hurricane’s inner core region. Atmospheric Science Paper 182, Colorado State University, Fort Collins, CO, 134 pp.

    • Search Google Scholar
    • Export Citation
  • Shea, D. J., , and W. Gray, 1973: Hurricanes inner core region. Part I: Symmetric and asymmetric structure. J. Atmos. Sci., 30 , 15441564.

    • Search Google Scholar
    • Export Citation
  • Sheets, R. C., 1982: On the structure of hurricanes as revealed by research aircraft data. Intense Atmospheric Vortices, L. Bengtsson and J. Lighthill, Eds., Springer-Verlag, 35–49.

    • Search Google Scholar
    • Export Citation
  • Sherman, L., 1956: On the wind asymmetry of hurricanes. J. Meteor., 13 , 500503.

  • Simpson, J., , R. F. Adler, , and G. R. North, 1988: Proposed Tropical Rainfall Measuring Mission (TRMM) satellite. Bull. Amer. Meteor. Soc., 69 , 278295.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., , and G. J. Holland, 1996: Beta drift of baroclinic vortices. Part I: Adiabatic vortices. J. Atmos. Sci., 53 , 411427.

  • Wang, Y., , and C. C. Wu, 2004: Current understanding of tropical cyclone structure and intensity changes—A review. Meteor. Atmos. Phys., 87 , 257278.

    • Search Google Scholar
    • Export Citation
  • Weatherford, C. L., , and W. M. Gray, 1988: Typhoon structure as revealed by aircraft reconnaissance. Part II: Structural variability. Mon. Wea. Rev., 116 , 10441056.

    • Search Google Scholar
    • Export Citation
  • Willoughby, H. E., 1990: Temporal changes of the primary circulation in tropical cyclones. J. Atmos. Sci., 47 , 242264.

  • Wong, K. Y., , C. L. Yip, , and P. W. Li, 2007: A novel algorithm for automatic tropical cyclone fix using Doppler radar data. Meteor. Appl., 14 , 4959.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 9 9 4
PDF Downloads 3 3 0

A Diagnostic Study of the Intensity of Three Tropical Cyclones in the Australian Region. Part II: An Analytic Method for Determining the Time Variation of the Intensity of a Tropical Cyclone

View More View Less
  • 1 School of Earth Sciences, University of Melbourne, Parkville, Australia
© Get Permissions
Restricted access

Abstract

The observed features discussed in of this paper, regarding the intensification and dissipation of Tropical Cyclone Kathy, have been integrated in a simple mathematical model that can produce a reliable 15–30-h forecast of (i) the central surface pressure of a tropical cyclone, (ii) the sustained maximum surface wind and gust around the cyclone, (iii) the radial distribution of the sustained mean surface wind along different directions, and (iv) the time variation of the three intensity parameters previously mentioned. For three tropical cyclones in the Australian region that have some reliable ground truth data, the computed central surface pressure, the predicted maximum mean surface wind, and maximum gust were, respectively, within ±3 hPa and ±2 m s−1 of the observations. Since the model is only based on the circulation in the boundary layer and on the variation of the cloud structure in and around the cyclone, its accuracy strongly suggests that (i) the maximum wind is partly dependent on the large-scale environmental circulation within the boundary layer and partly on the size of the radius of maximum wind and (ii) that all factors that contribute one way or another to the intensity of a tropical cyclone act together to control the size of the eye radius and the central surface pressure.

Corresponding author address: Kevin Walsh, School of Earth Sciences, University of Melbourne, Parkville VIC, 3010 Australia. Email: kevin.walsh@unimelb.edu.au

Abstract

The observed features discussed in of this paper, regarding the intensification and dissipation of Tropical Cyclone Kathy, have been integrated in a simple mathematical model that can produce a reliable 15–30-h forecast of (i) the central surface pressure of a tropical cyclone, (ii) the sustained maximum surface wind and gust around the cyclone, (iii) the radial distribution of the sustained mean surface wind along different directions, and (iv) the time variation of the three intensity parameters previously mentioned. For three tropical cyclones in the Australian region that have some reliable ground truth data, the computed central surface pressure, the predicted maximum mean surface wind, and maximum gust were, respectively, within ±3 hPa and ±2 m s−1 of the observations. Since the model is only based on the circulation in the boundary layer and on the variation of the cloud structure in and around the cyclone, its accuracy strongly suggests that (i) the maximum wind is partly dependent on the large-scale environmental circulation within the boundary layer and partly on the size of the radius of maximum wind and (ii) that all factors that contribute one way or another to the intensity of a tropical cyclone act together to control the size of the eye radius and the central surface pressure.

Corresponding author address: Kevin Walsh, School of Earth Sciences, University of Melbourne, Parkville VIC, 3010 Australia. Email: kevin.walsh@unimelb.edu.au

Save