• Arbogast, P., 1998: L’inversion du tourbillon potentiel: méthodologie, application l’étude des interactions non-linéaires dans la formation des dépressions météorologiques. Ph.D. thesis, Université Paul Sabatier, Toulouse, 227 pp.

  • Arbogast, P., , K. Maynard, , and F. Crepin, 2008: Ertel potential vorticity inversion using a digital filter initialization method. Quart. J. Roy. Meteor. Soc., 134 , 12871296.

    • Search Google Scholar
    • Export Citation
  • Beare, R., , A. Thorpe, , and A. White, 2003: The predictability of extratropical cyclones: Nonlinear sensitivity to localized potential-vorticity perturbations. Quart. J. Roy. Meteor. Soc., 129 , 219237.

    • Search Google Scholar
    • Export Citation
  • Beezley, J. D., , and J. Mandel, 2008: Morphing ensemble Kalman filters. Tellus, 60 , 131140.

  • Belo-Pereira, M., , and L. Berre, 2006: The use of an ensemble approach to study the background error covariances in a global NWP model. Mon. Wea. Rev., 134 , 24662489.

    • Search Google Scholar
    • Export Citation
  • Browning, K., 1997: The dry intrusion perspective of extra-tropical cyclone development. Meteor. Appl., 4 , 317324.

  • Chapnik, B., , G. Desroziers, , F. Rabier, , and O. Talagrand, 2004: Properties and first application of an error-statistics tuning method in variational assimilation. Quart. J. Roy. Meteor. Soc., 130 , 22532275.

    • Search Google Scholar
    • Export Citation
  • Chapnik, B., , G. Desroziers, , F. Rabier, , and O. Talagrand, 2006: Diagnosis and tuning of observational error in a quasi-operational data assimilation setting. Quart. J. Roy. Meteor. Soc., 132 , 543565.

    • Search Google Scholar
    • Export Citation
  • Chen, Y., , and C. Snyder, 2007: Assimilating vortex position with an ensemble Kalman filter. Mon. Wea. Rev., 135 , 18281845.

  • Courtier, P., , C. Freydier, , J. Geleyn, , F. Rabier, , and M. Rochas, 1991: The Arpege project at Météo-France. Proc. ECMWF Seminar on Numerical Methods in Atmospheric Models, Reading, United Kingdom, ECMWF, 193–232.

    • Search Google Scholar
    • Export Citation
  • Davis, C., 1992: Piecewise potential vorticity inversion. J. Atmos. Sci., 49 , 13971411.

  • Demirtas, M., , and A. Thorpe, 1999: Sensitivity of short-range weather forecasts to local potential vorticity modifications. Mon. Wea. Rev., 127 , 922939.

    • Search Google Scholar
    • Export Citation
  • Desroziers, G., , and S. Ivanov, 2001: Diagnosis and adaptive tuning of observation-error parameters in a variational assimilation. Quart. J. Roy. Meteor. Soc., 127 , 14331452.

    • Search Google Scholar
    • Export Citation
  • Georgiev, C., 1999: Quantitative relationship between METEOSAT water vapour data and positive vorticity anomalies: A case study over the Mediterranean. Meteor. Appl., 6 , 97109.

    • Search Google Scholar
    • Export Citation
  • Guérin, R., , G. Desroziers, , and P. Arbogast, 2006: 4D-Var analysis of pseudo potential-vorticity observations. Quart. J. Roy. Meteor. Soc., 132 , 12831298.

    • Search Google Scholar
    • Export Citation
  • Hello, G., , and P. Arbogast, 2004: Two different methods to correct the initial conditions applied to the storm of 27 December 1999 over southern France. Meteor. Appl., 11 , 4157.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B., , M. McIntyre, , and A. Roberson, 1985: On the use and significance of isentropic potential vorticity maps. Quart. J. Roy. Meteor. Soc., 111 , 877946.

    • Search Google Scholar
    • Export Citation
  • Juckes, M., 1994: Quasigeostrophic dynamics of the tropopause. J. Atmos. Sci., 51 , 27562768.

  • Köpken, C., , G. Kelly, , and J-N. Thépaut, 2004: Assimilation of METEOSAT radiance data within the 4D-Var system at ECMWF: Assimilation experiments and forecast impact. Quart. J. Roy. Meteor. Soc., 130 , 22772292.

    • Search Google Scholar
    • Export Citation
  • Lawson, W., , and J. Hansen, 2005: Alignment error models and ensemble-based data assimilation. Mon. Wea. Rev., 133 , 16871709.

  • Manders, A., , W. Verkley, , J. Diepeveen, , and A. Moene, 2007: Application of a potential vorticity modification method to a case of rapid cyclogenesis over the Atlantic Ocean. Quart. J. Roy. Meteor. Soc., 133 , 17551770.

    • Search Google Scholar
    • Export Citation
  • Mansfield, D., 1996: The use of potential vorticity as an operational forecast tool. Meteor. Appl., 3 , 195210.

  • Michel, Y., 2008: Assimilation de données d’images télédétectées en météorologie. Ph.D. thesis, Université Paris Est, Paris, 195 pp.

  • Michel, Y., , and F. Bouttier, 2006: Automated tracking of dry intrusions on satellite water vapour imagery and model output. Quart. J. Roy. Meteor. Soc., 132 , 22572276.

    • Search Google Scholar
    • Export Citation
  • Moore, R., , and M. Montgomery, 2004: Reexamining the dynamics of short-scale, diabatic Rossby waves and their role in midlatitude moist cyclogenesis. J. Atmos. Sci., 61 , 754768.

    • Search Google Scholar
    • Export Citation
  • Moore, R., , and M. Montgomery, 2005: Analysis of an idealized, three-dimensional diabatic Rossby vortex: A coherent structure of the moist baroclinic atmosphere. J. Atmos. Sci., 62 , 27032725.

    • Search Google Scholar
    • Export Citation
  • Morel, C., , and S. Sénési, 2002: A climatology of mesoscale convective systems over Europe using satellite infrared imagery. Part I: Methodology. Quart. J. Roy. Meteor. Soc., 128 , 19531971.

    • Search Google Scholar
    • Export Citation
  • Parrish, D., , and J. Derber, 1992: The National Meteorological Center’s spectral statistical interpolation analysis system. Mon. Wea. Rev., 120 , 17471763.

    • Search Google Scholar
    • Export Citation
  • Plu, M., , and P. Arbogast, 2005: A cyclogenesis evolving into two distinct scenarios and its implications for short-term ensemble forecasting. Mon. Wea. Rev., 133 , 20162029.

    • Search Google Scholar
    • Export Citation
  • Ramond, D., , H. Corbin, , M. Desbois, , G. Szejwach, , and P. Waldteufel, 1981: The dynamics of polar jet streams as depicted by the Meteosat WV channel radiance. Mon. Wea. Rev., 109 , 21642176.

    • Search Google Scholar
    • Export Citation
  • Ravela, S., , K. Emanuel, , and D. McLaughlin, 2007: Data assimilation by field alignment. Physica D, 230 , 127145.

  • Røsting, B., , and J. Kristjánsson, 2006: Improving simulations of severe winter storms by initial modification of potential vorticity in sensitive regions. Quart. J. Roy. Meteor. Soc., 132 , 26252652.

    • Search Google Scholar
    • Export Citation
  • Røsting, B., , J. Sunde, , and K. Midtbo, 1996: Monitoring of NWP models by use of satellite data. Meteor. Appl., 3 , 331340.

  • Røsting, B., , J. Kristjánsson, , and J. Sunde, 2003: The sensitivity of numerical simulations to initial modifications of potential vorticity—A case-study. Quart. J. Roy. Meteor. Soc., 129 , 26972718.

    • Search Google Scholar
    • Export Citation
  • Santurette, P., , and A. Joly, 2002: ANASYG/PRESYG, Météo-France’s new graphical summary of the synoptic situation. Meteor. Appl., 9 , 129154.

    • Search Google Scholar
    • Export Citation
  • Santurette, P., , and C. Georgiev, 2005: Weather Analysis and Water Vapor Imagery and Potential Vorticity Analysis. Academic Press, 179 pp.

    • Search Google Scholar
    • Export Citation
  • Saunders, R., , M. Matricardi, , and P. Brunel, 1999: An improved fast radiative transfer model for assimilation of satellite radiance observations. Quart. J. Roy. Meteor. Soc., 125 , 14071425.

    • Search Google Scholar
    • Export Citation
  • Stoffelen, A., and Coauthors, 2005: The atmospheric dynamics mission for global wind field measurement. Bull. Amer. Meteor. Soc., 86 , 7387.

    • Search Google Scholar
    • Export Citation
  • Swarbrick, S., 2001: Applying the relationship between potential vorticity fields and water vapour imagery to adjust initial conditions in numerical weather prediction. Meteor. Appl., 8 , 221228.

    • Search Google Scholar
    • Export Citation
  • Verkley, W., , P. Vosbeek, , and A. Moene, 2005: Manually adjusting a numerical weather analysis in terms of potential vorticity using three-dimensional variational data assimilation. Quart. J. Roy. Meteor. Soc., 131 , 17131736.

    • Search Google Scholar
    • Export Citation
  • Wirth, V., , C. Appenzeller, , and M. Juckes, 1997: Signatures of induced vertical air motion accompanying quasi-horizontal roll-up of stratospheric intrusions. Mon. Wea. Rev., 125 , 25042519.

    • Search Google Scholar
    • Export Citation
  • Yessad, K., , and P. Bénard, 1995: Introduction of a local mapping factor in the spectral part of the Météo-France global variable mesh numerical forecast model. Quart. J. Roy. Meteor. Soc., 122 , 17011719.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 4 4 0
PDF Downloads 1 1 0

Data Assimilation of Tropopause Height Using Dry Intrusion Observations

View More View Less
  • 1 CNRM-GAME and CNRS, Météo-France, Toulouse, France
© Get Permissions
Restricted access

Abstract

This article investigates the problem of initializing upper-level potential vorticity by using the detection of dry intrusions that can be seen in water vapor images. First, a satellite image processing technique has been developed for the identification and tracking of dry intrusions on geostationary satellite images. This technique can also be applied to images derived from model fields through a radiative transfer model. A linking algorithm automatically compares the trajectories of the dry intrusions in the model and in the satellite images. Differences of brightness temperatures are then converted to differences of tropopause height through a simple linear model, which is based on the correlation found in the background. As the scheme is likely to provide observations of the tropopause height, it also suggests that a space-alignment representation of the errors be used. A simple one-dimensional study provides a depiction of the background error covariance in alignment space, which is compared to the traditional approach of background error covariance in amplitude space. An approximate form of the Ertel potential vorticity operator is then used to incorporate pseudo-observations inside a global four-dimensional variational assimilation scheme. A case study of cyclogenesis highlights the difference between the amplitude–space assimilation of potential vorticity values and the alignment space assimilation of the height of the tropopause.

Corresponding author address: Yann Michel, CNRM/GMAP, Météo-France 42 av. G. Coriolis, 31057 Toulouse CEDEX 1, France. Email: yann.michel@meteo.fr

Abstract

This article investigates the problem of initializing upper-level potential vorticity by using the detection of dry intrusions that can be seen in water vapor images. First, a satellite image processing technique has been developed for the identification and tracking of dry intrusions on geostationary satellite images. This technique can also be applied to images derived from model fields through a radiative transfer model. A linking algorithm automatically compares the trajectories of the dry intrusions in the model and in the satellite images. Differences of brightness temperatures are then converted to differences of tropopause height through a simple linear model, which is based on the correlation found in the background. As the scheme is likely to provide observations of the tropopause height, it also suggests that a space-alignment representation of the errors be used. A simple one-dimensional study provides a depiction of the background error covariance in alignment space, which is compared to the traditional approach of background error covariance in amplitude space. An approximate form of the Ertel potential vorticity operator is then used to incorporate pseudo-observations inside a global four-dimensional variational assimilation scheme. A case study of cyclogenesis highlights the difference between the amplitude–space assimilation of potential vorticity values and the alignment space assimilation of the height of the tropopause.

Corresponding author address: Yann Michel, CNRM/GMAP, Météo-France 42 av. G. Coriolis, 31057 Toulouse CEDEX 1, France. Email: yann.michel@meteo.fr

Save