• Brankovic, C., , B. Matjacic, , S. Ivatek-Šahdan, , and R. Buizza, 2008: Downscaling of ECMWF ensemble forecasts for cases of severe weather: Ensemble statistics and cluster analysis. Mon. Wea. Rev., 136 , 33233342.

    • Search Google Scholar
    • Export Citation
  • Buzzi, A., , and L. Foschini, 2000: Mesoscale meteorological features associated with heavy precipitation in the southern alpine region. Meteor. Atmos. Phys., 72 , 131146.

    • Search Google Scholar
    • Export Citation
  • Candille, G., , C. Cote, , P. L. Houtekamer, , and G. Pellerin, 2007: Verification of an ensemble prediction system against observations. Mon. Wea. Rev., 135 , 26882699.

    • Search Google Scholar
    • Export Citation
  • Cherubini, T., , A. Ghelli, , and F. Lalaurette, 2002: Verification of precipitation forecasts over the alpine region using a high-density observing network. Wea. Forecasting, 17 , 238249.

    • Search Google Scholar
    • Export Citation
  • Efron, B., 1992: Jacknife-after-bootstrap standard errors and influence functions. J. Roy. Stat. Soc., 54B , 83127.

  • Ferretti, R., , T. Paolucci, , W. Zheng, , G. Visconti, , and P. Bonelli, 2000: Analyses of the precipitation pattern on the alpine region using different cumulus convection parameterizations. J. Appl. Meteor., 39 , 182200.

    • Search Google Scholar
    • Export Citation
  • Frei, C., , and C. Schär, 1998: A precipitation climatology of the Alps from high-resolution rain-gauge observations. Int. J. Climatol., 18 , 873900.

    • Search Google Scholar
    • Export Citation
  • Frei, C., , R. Schöll, , S. Fukutome, , J. Schmidli, , and P. L. Vidale, 2006: Future change of precipitation extremes in Europe: Intercomparison of scenarios from regional climate models. J. Geophys. Res., 111 , D06105. doi:10.1029/2005JD005965.

    • Search Google Scholar
    • Export Citation
  • Hagedorn, R., , T. M. Hamill, , and J. S. Whitaker, 2008: Probabilistic forecast calibration using ECMWF and GFS ensemble reforecasts. Part I: Two-meter temperatures. Mon. Wea. Rev., 136 , 26082619.

    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., 1999: Hypothesis tests for evaluating numerical precipitation forecasts. Wea. Forecasting, 14 , 155167.

  • Hamill, T. M., , and J. Juras, 2006: Measuring forecast skill: Is it real skill or is it the varying climatology? Quart. J. Roy. Meteor. Soc., 132 , 29052923.

    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., , and J. S. Whitaker, 2006: Probabilistic quantitative precipitation forecasts based on reforecast analogs: Theory and application. Mon. Wea. Rev., 134 , 32093229.

    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., , J. S. Whitaker, , and X. Wei, 2004: Ensemble reforecasting: Improving medium-range forecast skill using retrospective forecasts. Mon. Wea. Rev., 132 , 14341447.

    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., , J. S. Whitaker, , and S. L. Mullen, 2006: Reforecasts: An important dataset for improving weather predictions. Bull. Amer. Meteor. Soc., 87 , 3346.

    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., , R. Hagedorn, , and J. S. Whitaker, 2008: Probabilistic forecast calibration using ECMWF and GFS ensemble reforecasts. Part II: Precipitation. Mon. Wea. Rev., 136 , 26202632.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., 2004: The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor., 43 , 170181.

  • Lalaurette, F., 2003: Early detection of abnormal weather conditions using a probabilistic extreme forecast index. Quart. J. Roy. Meteor. Soc., 129 , 30373057.

    • Search Google Scholar
    • Export Citation
  • Livezey, R. E., 2003: Categorical events. Forecast Verification: A Practitioner’s Guide in Atmospheric Science, I. T. Jolliffe and D. B. Stephenson, Eds., Wiley, 77–96.

    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., 1993: The Essence of Chaos. University of Washington Press, 227 pp.

  • Marsigli, C., , A. Montani, , F. Nerozzi, , and T. Paccagnella, 2004a: Probabilistic high-resolution forecast of heavy precipitation over Central Europe. Nat. Hazards Earth Syst. Sci., 4 , 315322.

    • Search Google Scholar
    • Export Citation
  • Marsigli, C., , F. Boccanera, , A. Montani, , F. Nerozzi, , and T. Paccagnella, 2004b: COSMO-LEPS verification: First results. COSMO Newsletter, 4 .[Available online at http://www.cosmo-model.org/content/model/documentation/newsLetters/default.htm].

    • Search Google Scholar
    • Export Citation
  • Marsigli, C., , F. Boccanera, , A. Montani, , and T. Paccagnella, 2005: The COSMO-LEPS mesoscale ensemble system: Validation of the methodology and verification. Nonlinear Processes Geophys., 12 , 527536.

    • Search Google Scholar
    • Export Citation
  • Marsigli, C., , A. Montani, , and T. Paccangnella, 2008: A spatial verification method applied to the evaluation of high-resolution ensemble forecasts. Meteor. Appl., 15 , 125143.

    • Search Google Scholar
    • Export Citation
  • Molteni, F., , R. Buizza, , C. Marsigli, , A. Montani, , F. Nerozzi, , and T. Paccagnella, 2001: A strategy for high-resolution ensemble prediction. I: Definition of representative members and global-model experiments. Quart. J. Roy. Meteor. Soc., 127 , 20692094.

    • Search Google Scholar
    • Export Citation
  • Montani, A., and Coauthors, 2003: Operational limited-area ensemble forecasts based on the Lokal Modell. ECMWF Newsletter, No. 98, ECMWF, Reading, United Kingdom, 2–7.

    • Search Google Scholar
    • Export Citation
  • Murphy, A. H., 1973: A new vector partition of the probability score. J. Appl. Meteor., 12 , 595600.

  • Palmer, T. N., 2000: Predicting uncertainty in forecasts of weather and climate. Rep. Prog. Phys., 63 , 71116.

  • Rotach, M. W., and Coauthors, 2009: MAP D-PHASE: Real-time demonstration of weather forecast quality in the alpine region. Bull. Amer. Meteor. Soc., 90 , 13211336.

    • Search Google Scholar
    • Export Citation
  • Tiedtke, M., 1989: A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon. Wea. Rev., 117 , 17791800.

    • Search Google Scholar
    • Export Citation
  • Verbunt, M., , A. Walser, , J. Gurtz, , A. Montani, , and C. Schär, 2007: Probabilistic flood forecasting with a limited-area ensemble prediction system: Selected case studies. J. Hydrometeor., 8 , 897909.

    • Search Google Scholar
    • Export Citation
  • Weigel, A. P., , M. A. Liniger, , and C. Appenzeller, 2007: The discrete Brier and ranked probability skill scores. Mon. Wea. Rev., 135 , 118124.

    • Search Google Scholar
    • Export Citation
  • Weigel, A. P., , M. A. Liniger, , and C. Appenzeller, 2009: Seasonal ensemble forecasts: Are recalibrated single models better than multimodels? Mon. Wea. Rev., 137 , 14601479.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2006a: Comparison of ensemble-MOS methods in the Lorenz ’96 setting. Meteor. Appl., 13 , 243256.

  • Wilks, D. S., 2006b: Statistical Methods in the Atmospheric Sciences. 2nd ed. Academic Press, 627 pp.

  • Wilks, D. S., , and T. M. Hamill, 2007: Comparison of ensemble-MOS methods using GFS reforecasts. Mon. Wea. Rev., 135 , 23792390.

  • Zsoter, E., 2006: Recent developments in extreme weather forecasting. ECMWF Newsletter, No. 107, ECMWF, Reading, United Kingdom, 8–17.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 82 82 13
PDF Downloads 52 52 11

Calibrated Precipitation Forecasts for a Limited-Area Ensemble Forecast System Using Reforecasts

View More View Less
  • 1 Federal Office of Meteorology and Climatology, MeteoSwiss, Zurich, Switzerland
© Get Permissions
Restricted access

Abstract

The calibration of numerical weather forecasts using reforecasts has been shown to increase the skill of weather predictions. Here, the precipitation forecasts from the Consortium for Small Scale Modeling Limited Area Ensemble Prediction System (COSMO-LEPS) are improved using a 30-yr-long set of reforecasts. The probabilistic forecasts are calibrated on the exceedance of return periods, independently from available observations. Besides correcting for systematic model errors, the spatial and temporal variability in the amplitude of rare precipitation events is implicitly captured when issuing forecasts of return periods. These forecast products are especially useful for issuing warnings of upcoming events. A way to visualize those calibrated ensemble forecasts conveniently for end users and to present verification results of the return period–based forecasts for Switzerland is proposed.

It is presented that, depending on the lead time and return period, calibrating COSMO-LEPS with reforecasts increases the precipitation forecast skill substantially (about 1 day in forecast lead time). The largest improvements are achieved during winter months. The reasonable choice of the length of the reforecast climatology is estimated for an efficient use of this computational expensive calibration method.

Corresponding author address: Felix Fundel, MeteoSchweiz, Kraehbuehlstrasse 58, 8044 Zurich, Switzerland. Email: felix.fundel@meteoswiss.ch

Abstract

The calibration of numerical weather forecasts using reforecasts has been shown to increase the skill of weather predictions. Here, the precipitation forecasts from the Consortium for Small Scale Modeling Limited Area Ensemble Prediction System (COSMO-LEPS) are improved using a 30-yr-long set of reforecasts. The probabilistic forecasts are calibrated on the exceedance of return periods, independently from available observations. Besides correcting for systematic model errors, the spatial and temporal variability in the amplitude of rare precipitation events is implicitly captured when issuing forecasts of return periods. These forecast products are especially useful for issuing warnings of upcoming events. A way to visualize those calibrated ensemble forecasts conveniently for end users and to present verification results of the return period–based forecasts for Switzerland is proposed.

It is presented that, depending on the lead time and return period, calibrating COSMO-LEPS with reforecasts increases the precipitation forecast skill substantially (about 1 day in forecast lead time). The largest improvements are achieved during winter months. The reasonable choice of the length of the reforecast climatology is estimated for an efficient use of this computational expensive calibration method.

Corresponding author address: Felix Fundel, MeteoSchweiz, Kraehbuehlstrasse 58, 8044 Zurich, Switzerland. Email: felix.fundel@meteoswiss.ch

Save